YUNFAN REN

Ph.D. Candidate

EDUCATION -

9/2017 - 7/2021	B.E. in Automation Three times <i>Academic scholarships</i> <i>Outstanding Thesis Award</i>	Harbin Institute of Technology
1/2020 - 5/2020	Exchange Student Selected major courses: Mechatron Feedback Control System (A), Geometry and Learning for 3D Visio	-
10/2021 - Present Graduating: 2025	Ph.D. Student Research Interests: Autonomous Navigation; Aerial Sv	The University of Hong Kong warm; Trajectory Planning;

Optimization; Optimal Control

renyf@connect.hku.hk

github.com/RENyunfan

AWARDS	
Paper Awards	Outstanding Navigation Paper - Finalist5/2023International Conference on Robotics and Automation (ICRA) 2023Paper title: Online whole-body motion planning for quadrotor using multi-resolution search.Authors: Yunfan REN*, Siqi Liang*, Fangcheng Zhu, Guozheng Lu, Fu Zhang
Paper Awards	Best Overall and Best Student Paper - Finalist10/2023International Conference on Intelligent Robots and Systems (IROS) 2023.Paper title: Decentralized Swarm Trajectory Generation for LiDAR-based Aerial Tracking in Cluttered EnvironmentsAuthors: Longji Yin*, Fangcheng Zhu*, Yunfan REN*, Fanze Kong, Fu Zhang (* indicates co-first authors)
SELECTED PUBL	
Journal Article	Safety-assured High-speed Navigation for MAVs Authors: Yunfan REN [*] , Fangcheng Zhu [*] , Guozheng Lu, Yixi Cai, Longji Yin, Fanze Kong, Jiarong Lin, Nan Chen, Fu Zhang AAAS, Science Robotics
	Developed the Safety-assUred high-sPeed aErial Robot (SUPER), a compact MAV designed for high- speed autonomous navigation in cluttered environments. Utilizing a lightweight LiDAR sensor for long- range obstacle detection, SUPER integrates an efficient planning framework that generates dual trajec- tories: one for safety in known-free spaces and another for speed in both known and unknown areas. This framework reduces failure rates by 35.9 times while cutting planning time in half. In real-world tests, SUPER achieved autonomous speeds exceeding 20 m/s, avoiding thin obstacles and navigating narrow spaces.
Journal Article	A Survey on LiDAR-based Autonomous Aerial Vehicles Authors: Yunfan REN , Yixi Cai, Haotian Li, Nan Chen, Fangcheng Zhu, Longji Yin, Fanze Kong, Rundong Li, Fu Zhang <i>IEEE Transactions on Mechatronics</i> (under review)
	This survey provides a comprehensive overview of recent advancements in LiDAR-based autonomous UAVs, focusing on design, perception, planning, and control. Highlighting LiDAR's pivotal role in GPS-denied navigation due to its accuracy and range, we examine sensor evolution and integration with UAVs to enable complex missions in challenging environments.
Journal Article	Autonomous Tail-Sitter Flights in Unknown Environments Authors: Guozheng Lu [*] , Yunfan REN [*] , Fangcheng Zhu, Haotian Li, Ruize Xue, Yixi Cai, Ximin Lyu, Fu Zhang IEEE Transactions on Robotics (Co-first author)
	This paper introduces the first fully autonomous tail-sitter UAV for high-speed navigation in complex envi- ronments, leveraging LiDAR sensing and onboard trajectory planning. We propose an optimization-based planning framework with a novel NLP solver for real-time trajectory generation, achieving efficiency and feasibility under constraints. Tests demonstrate speeds up to 15 m/s in varied settings.

Google Scholar

• renyunfan.cn

Journal Article	Swarm-LIO2: Decentralized, Efficient LiDAR-inertial Odometry for UAV Swarms Authors: Fangcheng Zhu*, Yunfan REN*, Longji Yin*, Fanze Kong, Qingbo Liu, Ruize Xue, Wenyi Liu, Yixi Cai, Guozheng Lu, Haotian Li, Fu Zhang IEEE Transactions on Robotics (Co-first author)
	This paper introduces Swarm-LIO2: a decentralized, plug-and-play LiDAR-inertial odometry system for aerial swarms, achieving centimeter-level localization accuracy. Enabled efficient state estimation with minimal data exchange and scalable performance across large UAV teams. Validated in real-world and GPS-denied environments, demonstrating high adaptability for swarm missions.
Conference Paper	Online whole-body motion planning for quadrotor using multi-resolution search Authors: Yunfan REN* , Siqi Liang*, Fangcheng Zhu, Guozheng Lu, Fu Zhang IEEE International Conference on Robotics and Automation (ICRA) 2023 Outstanding Navigation Paper Finalist
	This study tackles the challenge of online whole-body motion planning for quadrotors in unknown and unstructured environments. We explore the feasibility of using only onboard sensing and computational units to enable the drone to actively tilt and navigate through narrow gaps.
Journal Paper	Integrated Planning and Control for Quadrotor Navigation in Presence of Suddenly Appearing Objects and Disturbances Authors: Wenyi Liu [*] , Yunfan REN [*] , Fu Zhang <i>IEEE Robotics and Automation Letters</i> (Co-first author)
	This work proposes IPC (Integrated Planning and Control), an integrated framework for quadrotor drones. IPC have high bandwidth and extremely low latency (e.g., 1 - 3 ms), successfully addressing the challenges of avoiding sudden obstacles and robust navigation under disturbances.
Conference Paper	ROG-Map: An Efficient Robocentric Occupancy Grid Map for Large-scene and High-resolution LiDAR-
	based Motion Planning Authors: Yunfan REN, Yixi Cai, Fangcheng Zhu, Siqi Liang, Fu Zhang IEEE/RSJ International Conference on Intelligent Robots and Systems (IROS) 2024
	ROG-Map is a LiDAR-based occupancy grid map (OGM) optimized for robotic navigation. It maintains a local map that moves with the robot, enhancing efficiency and reducing memory use for large-scale autonomous flights. We propose a novel obstacle inflation method that lowers computation costs, outperforming existing methods on public datasets.
Conference Paper	Bubble planner: Planning high-speed smooth quadrotor trajectories using receding corridors Authors: Yunfan REN*, Fangcheng Zhu*, Wenyi Liu, Zhepei Wang, Yi Lin, Fei Gao, Fu Zhang IEEE/RSJ International Conference on Intelligent Robots and Systems (IROS) 2022
	Achieve high-speed (exceeding 13.7 m/s) autonomous navigation for LiDAR-based quadrotors in un- known and cluttered environments. To accomplish this, we propose a highly integrated onboard module that combines perception, planning, and control functionalities. This integrated system aims to enable efficient and high-speed navigation for quadrotors, utilizing LiDAR sensing technology in real time.
Conference Paper	Decentralized Swarm Trajectory Generation for LiDAR-based Aerial Tracking in Cluttered Environ-
	ments Authors: Longji Yin*, Fangcheng Zhu*, Yunfan REN*, Fanze Kong, Fu Zhang IEEE/RSJ International Conference on Intelligent Robots and Systems (IROS) 2023 Best Overall and Best Student Paper Finalist
	This paper presents a decentralized planner for swarm tracking, addressing the challenge of maintaining high target visibility in cluttered environments, by utilizing a decentralized kinodynamic searching front- end and a spatial-temporal optimizer to generate safe flight corridors, visible sectors, and collision-free trajectories for multiple unmanned aerial vehicles (UAVs) in real-world experiments.
	Media Exposure: Transformed research work into engaging videos, accumulating over 150 k views on
	video-sharing platforms such as Bilibili and YouTube.
	Open-source Contribution: Open-source contributions on GitHub received a total of over 3.6k stars.
SERVICE	Toaching accistant: ME 2/18 (Dunamics and Control) (DAT 7212/LIA) (Design Neulastian and Control)
	Teaching assistant: <i>ME 3418</i> (Dynamics and Control), <i>IDAT 7213</i> (UAV Design, Navigation, and Control) Student menter: Mentered 8 MSc students in LIAV research since 2021
	Student mentor: Mentored 8 MSc students in UAV research since 2021
	Reviewer: Reviewed 20+ papers for IEEE T-Mech, RA-L, ICRA, and IROS
	Talks: Delivered talks and oral presentations at IROS 2022, ICRA 2023, and IROS 2024