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Abstract—This paper introduces LAMM, an open-source frame-
work for large-scale multi-session 3D LiDAR point cloud map
merging. LAMM can automatically integrate sub-maps from mul-
tiple agents carrying LiDARs with different scanning patterns,
facilitating place feature extraction, data association, and global
optimization in various environments. Our framework incorpo-
rates two key novelties that enable robust, accurate, large-scale
map merging. The first novelty is a temporal bidirectional filtering
mechanism that removes dynamic objects from 3D LiDAR point
cloud data. This eliminates the effect of dynamic objects on the
3D map model, providing higher-quality map merging results. The
second novelty is a robust and efficient outlier removal algorithm
for detected loop closures. This algorithm ensures a high recall
rate and a low false alarm rate in position retrieval, significantly
reducing outliers in repetitive environments during large-scale
merging. We evaluate our framework using various datasets, in-
cluding KITTI, HeLiPR, WildPlaces, and a self-collected colored
point cloud dataset. The results demonstrate that our proposed
framework can accurately merge maps captured by different types
of LiDARs and data acquisition devices across diverse scenarios.

Index Terms—Mapping, multi-robot SLAM, SLAM.

I. INTRODUCTION

LARGE-SCALE 3D maps are vital in various applications
for mobile robots, such as autonomous navigation [1],

urban planning [2], and disaster management [3]. These maps
provide an in-depth understanding of the environment, which
allows autonomous systems to navigate through complex sur-
roundings using efficient paths and informed decisions. State-
of-the-art LiDAR mapping techniques, such as Simultaneous
Localization and Mapping (SLAM), facilitate the generation of
dense 3D point cloud maps [4], [5]. However, the majority of
SLAM research focuses on map reconstruction using only a
single agent, which presents significant challenges in creating
large-scale 3D maps due to limitations in onboard resources
and sensing capabilities. The onboard resources, such as limited
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battery life, memory storage capacity, and computational power,
hinder the agent’s ability to cover vast areas and handle the large
amounts of data required to create detailed maps. Additionally,
the finite sensing range of a single agent can result in incom-
plete or sparse map reconstruction, making it difficult to cover
large-scale scenes effectively.

To efficiently reconstruct large-scale scenes, it is necessary to
utilize multiple agents simultaneously for data collection. This
approach enhances the coverage and efficiency of the mapping
process. However, using multiple agents for reconstruction re-
quires precise map merging to integrate the collected data accu-
rately. Map merging allows these agents to work collaboratively,
generating large-scale maps that cover areas beyond the reach
of a single agent. It also facilitates the integration of informa-
tion from various perspectives and locations, thereby mitigating
errors and inconsistencies that may arise in individual maps.

Current map merging techniques often rely on modeling-
based [6], [7], [8], [9], [10] or learning-based [11], [12], [13],
[14] approaches to extract features or environmental semantic
information directly from LiDAR point clouds, followed by data
association and global optimization. Nonetheless, merging a
large number of distinct map segments, particularly in complex
environments, continues to be a challenging issue [15]. One
primary challenge in map merging lies in place feature extrac-
tion. As sensors may perceive an environment from different
perspectives, the data captured from sensors of the same place
can be very different. Additionally, map segments may contain
appearance changes under different illumination conditions or
structural changes (i.e. dynamic objects in the environment, such
as vehicles and pedestrians, alter the appearance of scenes),
which will introduce further data association failures. Another
challenge in map merging is the robustness of data association, as
map merging techniques are sensitive to false positive matches.
Even very few incorrect data associations may turn global map
optimization into an ill-posed problem [16].

In this study, we propose LAMM, a point cloud map merging
framework, which enables robust and precise large-scale map
merging from different agents in diverse environments. Specif-
ically, we developed a temporal bidirectional filtering module
based on [17] to eliminate dynamic objects from the LiDAR
point cloud. Furthermore, we designed an efficient mechanism
to filter out false positive matches in detected loop closures to ob-
tain accurate geographical matches between multiple submaps
and optimize the global map accordingly. The contributions of
our proposed work can be summarized as follows:
� We designed a temporal bidirectional filtering method to

remove dynamic objects from 3D LiDAR point cloud data,
and employ our recent work Binary Triangle Combined de-
scriptors (BTC) [10] to provide accurate place description
thus improving the precision of the final merged results.
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� We designed an efficient outlier removal mechanism for
detected loop closures to reject false positives, significantly
reducing outliers and ensuring robust merging in complex,
large-scale environments.

� We provide a framework that enables the merging of large-
scale 3D LiDAR point cloud maps in various environments.
It successfully merges submaps captured at different times
and by different devices, automatically establishing loop
closures, and performing alignment and global optimiza-
tion. We have made our code open source and available on
https://github.com/hku-mars/LAMM to encourage further
research in this area.

� We conducted comprehensive qualitative and quantitative
evaluations on various large-scale datasets, including pub-
lic datasets such as KITTI, HeLiPR, and WildPlaces, as
well as our self-collected colored point cloud dataset in
Shenzhen. The proposed framework accurately merged
maps, demonstrating its high versatility across different
LiDAR types, heterogeneous data collection platforms, and
various scenarios. The corresponding video is available at
https://youtu.be/X2WSILJe-Ew.

II. RELATED WORKS

A. Map Merging

Map merging involves reorganizing unordered sub-maps into
a single, global, and consistent map. LiDAR sensors have been
widely applied in large-scale map merging tasks due to their
high accuracy and long detection range. Early map merging algo-
rithms utilized 2D LiDAR [18] to build occupancy grid maps and
perform map merging based on spectral information. However,
simple 2D occupancy maps do not meet the requirements for
complex 3D navigation tasks, leading to increasing attention
to 3D map merging [15]. SegMap [19] can extract semantic
information from 3D point clouds and provide street block-like
global map merging, but its data association heavily relies on
the segmentation of distinguishable semantic objects, which is
difficult to achieve in city-scale or campus-scale map merging
tasks. AutoMerge [20] offers a framework capable of merging
3D segments in city-scale environments without requiring initial
coordinate estimations, but it struggles in environments with
numerous dynamic objects.

The success of large-scale 3D LiDAR map merging heavily
depends on robust feature extraction from point clouds and
accurate data association between different segments, which are
challenging to ensure, especially for large-scale map merging.
In this section, we focus on the LiDAR map merging task, re-
viewing key techniques for 3D feature extraction and large-scale
data association.

Creating robust place descriptors for 3D LiDAR point clouds
is a significant challenge in large-scale environments. LiDAR
SLAM systems typically extract place descriptors based on the
structural features of point clouds. Methods using model-based
3D point cloud descriptors, such as ScanContext [8], [9], lever-
age structural features to evaluate point cloud similarities for
data association but are sensitive to large translation differ-
ences [21]. There are also methods employing learning-based
descriptors. AutoMerge [20] generates viewpoint-invariant de-
scriptors through neural networks. SegMap [19] construct place
descriptors that rely on semantic object segmentation. As these

methods heavily rely on training data, their performance may
not generalize well to new or unseen data.

In all the above methods, dynamic objects are rarely ad-
dressed, yet their elimination is crucial. Dynamic objects can
alter the structure and appearance of scenes, affecting place
feature extraction, leading to errors in data association, and
negatively impacting subsequent tasks such as navigation.

Another challenge in large-scale mapping is the presence
of similar scenes, which can result in false positive loop con-
straints during the establishment of correspondences between
different submaps. Common methods like RANSAC [20], [22]
and PCM [23], [24] typically use outlier filtering by setting
thresholds based on the maximum consistency of transforma-
tions derived from all loop closures.

In our work, we introduce a temporal bidirectional filtering
module based on M-Detector [17], which effectively removes
dynamic points from the 3D point cloud, resulting in a clean,
static map for subsequent tasks. We then utilize BTC [25] as a
descriptor for place features. BTC efficiently extracts both global
and local features from 3D point clouds, achieving full pose
invariance and high performance across diverse environments.
Its efficiency in both extraction and search operations makes
BTC particularly suitable for data association in large-scale
environments. We also propose a RANSAC-based method that
transforms loop closures between sub-maps back to the start-
ing point, offering a more accurate and robust mechanism for
rejecting false positives.

B. Dynamic Object Removal

Nowadays, dynamic object removal algorithms for LiDAR
point cloud maps mainly utilize dynamic object detection to pro-
vide dynamic/static information for each point, and then delete
the dynamic points. In dynamic points detection, traditional
algorithms offer greater flexibility and robustness compared to
learning-based methods, which often require labeled datasets
and network training.

Traditional algorithms are typically classified into ray-
casting, visibility-based, and visibility-free methods. Oc-
toMap [26] uses ray-casting to update occupancy grids from
sensor hits and misses but can be computationally demanding.
Kim et al. [27] introduced a static point cloud map using
multi-resolution range images based on visibility. However,
it faces challenges when detecting distant ground points for
sparse LiDAR queries. Lim et al. [28] tackled these issues
by utilizing height differences between the raw map and the
query for detection. However, this method requires careful
tuning of maximum and minimum height ranges, limiting its
effectiveness in certain scenarios. Newer approaches, like the
BeautyMap algorithm [29], enhance traditional methods by
utilizing binary-encoded matrices for dynamic point detection,
reducing latency and improving adaptability across different
environments. M-Detector [17], a recent technique, leverages
point-by-point event detection using LiDAR occlusion princi-
ples, offering microsecond-level latency and generalizing well
across different datasets.

III. METHODOLOGY

A. Problem Formulation

The task of map merging is to combine multiple trajectory
sequences generated by different robots or mapping sessions
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Fig. 1. The input to LAMM consists of LiDAR scans and their initial poses
from sequences awaiting merging. These initial scan poses are in the respective
frames of each sequence, typically obtained from a front-end SLAM system
such as FAST-LIO2 [30], and may include drift. Once all data is loaded, LAMM
constructs the sub-pose graph for the associated sequences, merges them into
a consistent frame and optimizes all poses to build a global map. Finally, the
framework outputs the global maps.

into a consistent global map representing the environment. Each
trajectory sequence consists of multiple frames of LiDAR point
clouds combined with odometry data, estimated using front-
end SLAM algorithms such as FAST-LIO2 [30] for each frame.
We define the list of trajectory sequences awaiting merging as
SN = {s1, s2, . . . , sn}, where each sequence si starts from a
different position and has no prior knowledge of the relative
pose to others. Using the map merging algorithm, the relative
poses between any two overlapping sequences are determined,
and together with optimized odometry, a globally consistent and
accurate map is generated.

B. System Overview

As illustrated in Fig. 1, the LAMM framework offers an
automated map merging solution for large-scale mapping tasks
involving single or multiple agents. This framework takes tra-
jectory sequences from several agents carrying LiDARs as
input and merges them into several globally consistent maps.
The LAMM framework is organized into three key modules:
in-sequence moving object removal, inter- and inner-sequence
place recognition, and global map merging.

The input to the framework is SN . For each sequence si ∈
SN , the moving objects removal module loads registered scans
(LiDAR point clouds) obtained from front-end SLAM algo-
rithms (e.g., FAST-LIO2 [30]) and employs a bidirectional
filtering mechanism to eliminate moving objects, resulting in
scans containing points from the static environment. The place
recognition module receives these cleaned scans and applies the
BTC algorithm to extract place descriptors for this sequence. It
then conducts loop closure detection among all sequences and
provides loop closure information for SN to the map merge
module. False positive loop closures are filtered out during the
map merging stage, and valid loop constraints are retained. Note
that the sequences may not be fully connected, meaning they
form several independent places. To address this, we check
the connectivity of sequences in SN and divide them into M
sub-pose graphs based on filtered loop closure information. Each
sub-pose graph is optimized separately to obtain M consistent
global maps.

C. Moving Objects Removal

We developed a moving object removal method based on
M-Detector [17]. M-detector operates on a point-by-point basis,

making decisions immediately after each LiDAR point is cap-
tured. It transforms each frame of the point cloud into a depth
map and uses the accumulated depth maps to make occlusion
tests. M-Detector uses three types of occlusion tests to determine
whether a point is moving: (1) detecting if a point occludes previ-
ously observed points, (2) detecting recursive occlusion where a
moving object occludes itself, and (3) detecting movement along
the LiDAR beam. M-detector identifies points passing these tests
as dynamic in real-time without needing to accumulate entire
frames, providing a low-latency solution. However, since the
accumulation of depth images is time-dependent, it can lead to
missed detections at the start of the detection process and in
certain specific cases.

We considered an intrinsic characteristic: if an object is dy-
namic, it should remain dynamic in both forward and reverse
temporal sequences, as its motion is inherent to the time series.
For example, a moving car’s position shifts across multiple
timestamps in the forward sequence. When the sequence is
reversed, the same positional changes occur in reverse order,
confirming its dynamic nature. This means that both forward and
reverse temporal sequences can be used to detect dynamic points.
Since our framework is designed for offline processing, we
propose a bidirectional detection method that detects dynamic
objects in both forward and reverse temporal sequences. This
enhances the detection of dynamic objects, thereby improving
the extraction of place features. It is noted that since the number
of static points is significantly greater than that of dynamic
points, mistakenly identifying some static points as dynamic
does not affect our place feature extraction.

To illustrate the effectiveness of the bidirectional filtering
mechanism, we firstly explain the working logic of M-Detector.
M-Detector employs three types of tests. The first test (case
1) detects dynamic points of objects moving perpendicular to
the LiDAR laser rays. In this case, the object must occlude
background objects observed previously. The second test (case
2) detects points of objects moving away from the LiDAR
in parallel to the sensor laser rays, where the objects must
be repeatedly occluded by themselves. The third test (case 3)
detects points of objects moving towards the LiDAR in parallel to
the sensor laser rays, where the objects must repeatedly occlude
themselves.

In both cases 2 and 3, repeated occlusion requires time accu-
mulation, so the initial scans containing moving objects cannot
effectively detect moving points. To fully leverage all available
point cloud data, we design a bidirectional filtering mechanism
that utilizes both forward and reverse timestamps. This method
assesses occlusion relationships from both temporal directions
and performs dual filtering to remove dynamic points effectively.
When reversing the timestamp, the initial scans become the last
scans, allowing the detection of moving points in these scans.
Besides, as shown in Fig. 2, dynamic points that originally
only triggered case 3 can now trigger case 1, as they occlude
previously observed background objects. This approach ensures
a more thorough detection and removal of moving objects in the
input point clouds, enhancing the accuracy of our dynamic object
detection.

D. Place Recognition

In our study, BTC [10] is employed as a descriptor of place
feature and conduct loop closure detection based on it. The
comprehensive workflow of BTC in our framework is depicted
in Fig. 1.
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Fig. 2. How bidirectional filtering mechanism help to detect more moving
points. In the detection of forward timestamp, points of the car cannot be detected
as they did not pass any occlusion tests. However, in the detection of reverse
timestamp, points of the car occlude the points of the background and pass the
occlusion test of case 1, thus they can be treated as dynamic points.

1) Binary Triangle Combined Descriptor: BTC demon-
strates greater adaptability and significant improvements in pre-
cision compared to its counterparts, especially in challenging
scenarios with large viewpoint variations (e.g., reverse direc-
tion, large translation, and/or rotation) [10], which is crucial
for large-scale map merging tasks. It is a novel descriptor that
combines global and local features.

2) Loop Closure Detection: To ensure comprehensive loop
closure detection for the input scan across all sequences, each
sequence loaded into the system maintains its own descriptor
database, numbered according to the sequence’s load order (i.e.,
the database for the first loaded sequence is numbered 1, the
second is numbered 2, and so on). Loop detection is sequentially
processed across all existing databases, including its own, in de-
scending order to obtain both inner-sequence and inter-sequence
loop closure results. The loop detection process consists of
three main steps: rough loop detection, fine loop detection,
and geometric verification. During rough detection, potential
loop closure candidates are quickly identified by matching BTC
descriptors in the database using a hash table. Fine detection
verifies these candidates by computing transformation matrices
between triangle pairs and clustering them to determine the most
supported transformations. The final geometric verification step
calculates the point-to-plane distances (using fewer than 50 key
points from the source submap) for these candidates, selecting
the candidate with the minimal distance as the valid loop closure.

E. Map Merging

To perform map merging in large-scale environments, we
employ pose graph optimization. However, the presence of
multiple similar scenes can compromise loop detection and lead
to inaccurate data associations such as potential mismatches
among non-overlapping sequences. To address these challenges,
we introduce a false loop filtering mechanism alongside a strat-
egy to classify trajectories based on their geographical overlap,
allowing for the correct optimization of each distinct group.

1) False Positive Loop Filter: For inner-sequence loop clo-
sures, we calculate the geographical difference between the
matching frames based on the initial pose and filter out loop
closures with significant geographical discrepancies to reject
false positives. For inter-sequence loop closures, we gather all
detected loops between every two sequences and apply a Ran-
dom Sample Consensus (RANSAC) based method to perform
outlier rejection.

Consider two trajectories si and sj , each with its own frame.
The start position of sj in the frame of si is defined as jI ∈ R

3.

Fig. 3. A visual example of the proposed outlier rejection method between two
sequences si and sj . Suppose four loop closures are detected between si and
sj . Among these, only the second(colored blue) loop closure is a false positive,
while the others(colored red, yellow and green respectively) are true positives.
We transform the start position of sj into the frame I of si according to the
four different loop closures, obtaining the points jI1 , jI2 , jI3 , and jI4 . It is evident
that jI2 is significantly distant from the other points in the frame of sequence si,
making it an easy candidate for rejection.

Using the detected loop closures, we can project the start position
of sj into the frame of si. Consequently, we obtain multiple
start positions of sequence sj in the frame of sequence si,
each calculated from an individual loop closure. These positions
are represented by three-dimensional points jIk ∈ R

3, where k
denotes the point calculated from the k-th loop closure transfor-
mation Tk ∈ SE3 provided by the place recognition module.
The scan pose of match scans in their own frame for k-th loop
closure can also be written as Ti

k ∈ SE3 and Tj
k ∈ SE3. Thus

we can calculate jIk as follows:

Ti
k = (Ri

k, t
i
k)

Tj
k = (Rj

k, t
j
k)

Tk = (Rk, tk)

jIk = −Rj
k ∗Rk

T ∗Ri
k
T ∗ tik −Rj

k ∗Rk
T ∗ tk + tik (1)

For true positive loop closures, the transformed points jIk
should be close to each other in Euclidean distance, while
outliers are typically far away due to incorrect transformations.
We then apply RANSAC clustering to these points to eliminate
outliers corresponding to erroneous loop closures, retaining only
the loop closure results associated with inliers.

2) Connectivity Check: The sequences input into the system
do not necessarily have spatial overlap. Directly optimizing
all sequences in a single pose graph without distinction only
adds unnecessary computational complexity. A more efficient
approach is to classify the sequences into multiple groups with
internal overlap but no overlap between different groups, and
then optimize the pose graph for each group separately. Fig. 4
illustrates the pose graphs for each group, which we refer to as
sub-pose graphs.

3) Pose Graph Optimization: The pose graph optimization
aims to align multiple sequences in the same sub-pose graph into
a global consistent map. The optimization problem is formulated
as:

min
X

⎛
⎝‖x0 � x∗

0‖2Σ0
+

∑
(i,j)∈E

∥∥zij �
(
x−1
i ⊕ xj

)∥∥2
Σij

⎞
⎠ (2)

where X denotes the set of all poses from multiple sequences
in the same sub-pose graph, with xi representing the i-th pose
in this sub-pose graph. The anchor node x0 corresponds to the
first node of the sub-pose graph, and it is constrained by the
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Fig. 4. The structure of sub-pose graphs: Based on the filtered loop closure
constraints among the j sequences, we divide the sequences into different
groups. In each group, loop closures are detected between sequences, whereas
no loop closures exist between sequences in different groups. For each group,
we construct a sub-pose graph, resulting in a total of m sub-pose graphs for
these j sequences.

TABLE I
THE OVERVIEW OF THE DATASETS UTILIZED IN EVALUATION

term ‖x0 � x∗
0‖2Σ0

, where x∗
0 is a known reference pose, often

set to the origin, to prevent the entire graph from drifting. The
set of relative pose constraints E includes both intra-trajectory
and inter-trajectory constraints. For any connected nodes i and
j, zij is the measured relative pose between them, with Σij

representing the associated covariance matrix that captures the
measurement uncertainty. The operator � computes the SE3
difference between two poses, while ⊕ performs pose compo-
sition in SE3. The optimization seeks to adjust the set of all
pose variables X to minimize the total residuals, ensuring both
local consistency within each sequence and global alignment
across different sequences. We apply standard back-end pose
graph optimization using GTSAM [31] for each sub-graph to
adjusts all poses to achieve a global consistent map.

IV. EXPERIMENTS

In this section, we evaluate the accuracy and robustness of
our map merging method using public datasets (KITTI [32],
HeLiPR [33], and WildPlaces [34]) and a self-collected dataset
from Shenzhen, China. We compare our method with the multi-
map merging method described in BTC [10] and conduct ab-
lation studies to verify the effectiveness of each module in
our algorithm. All algorithms are implemented in C++, and all
experiments are conducted on a desktop computer with an Intel
i9-13900K @ 3.0 GHz processor and 128 GB of memory.

A. Benchmark Comparison

1) Map Merging: To evaluate the efficacy of our framework,
we selected six sequences from the well-known KITTI [32]
dataset, as shown in Table II. These sequences represent ur-
ban scenarios with several overlapping regions, making them
ideal for generating multi-session data. Similar to previous
studies [24], we divided each sequence into multiple sessions,

TABLE II
RMSE OF THE ATE(m) ON KITTI DATASET

ensuring that all sessions overlap with at least one other session.
We use FAST-LIO2 [30] as the initial odometry for our method.
Since there is no open-source method specifically designed
for 3D LiDAR point cloud map merging, we compare our
framework with multi-SLAM system Disco-SLAM [35] and
DCL-SLAM [36]. We also compare our framework with the
map merging method based solely on loop detection proposed
in BTC [10]. This approach simply leverages BTC descriptors to
align multiple sequences collected at different times. Similar to
the place recognition module in our method, it uses BTC descrip-
tors to identify overlapping scans between sequences, providing
both intra- and inter-sequence constraints for constructing a
global pose graph. After incorporating all detected loop closure
constraints, the pose graph is optimized using GTSAM [31],
resulting in a globally consistent map.

The experiment results are shown in Table II and Fig. 5.
Our framework successfully merged all sequences with higher
accuracy (i.e., lower ATE) compared to other methods. Com-
pared to FAST-LIO2’s results after a single run, our method
demonstrated similar or even greater accuracy, highlighting its
robustness and precision. Disco-SLAM and DCL-SLAM failed
to merge sequence 02, likely due to the small overlap of this
sequence, which demands more precise loop closure detection
to achieve the merging task. Additionally, as BTC lacks a false
positive rejection module, it failed to merge sequence 00 and
02, because incorrect loop closure constraints were added to the
pose graph, causing the program to crash unexpectedly.

2) Place Recognition: In this section, we verify the supe-
riority of BTC descriptors in place recognition in comparison
with other methods. We selected Scan Context [8] used by
Disco-SLAM, LiDAR IRIS [37] used by DCL-SLAM, as well as
two newly designed descriptors, SOLiD [38] and RING++ [39],
for comparison. We use KITTI sequences 00, 02, 05, 06, 07,
and 08 to evaluate their performance in place recognition. In the
experiment, we determine the loop closure as true positive if the
ground-truth pose distance between the query and the predicted
loop submap is below a certain threshold (e.g., 5 meters in our
experiment).

The precision-recall curves of all 5 methods on the 6 se-
quences are plotted in Fig. 6. We also include Recall@1, F1
max score and AUC [39] as evaluation metrics in Table III. As
shown, BTC achieves superior performance in most sequences
for Recall@1, with the exception of KITTI07 and KITTI08,
where SOLiD performs slightly better. For both the F1 max
score and AUC, BTC consistently outperforms the other four
methods across all sequences.
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Fig. 5. Merging results of LAMM on KITTI dataset. (a1)-(f1) show the original submaps of KITTI00, 02, 05, 06, 07, and 08, while (a2)-(f2) present their
merged global maps, with each sequence represented in different colors.

Fig. 6. The precision-recall curves of different methods on KITTI dataset.

3) Dynamics Removal: To show the effectiveness of our
bidirectional M-Detector method, we compare it with Re-
movert [27], ERASOR [28], BeautyMap [29] and M-
Detector [17] in the Town 01 sequence of HeLiPR dataset,
which is populated with many dynamic elements, including
pedestrians and vehicles. We followed the benchmark method
in [40] for a quantitative comparison. It is noted that similar to
ERASOR [28], we manually selected 141 consecutive frames
from the Town 01 sequence that feature a significant number of
dynamic objects to quantitatively evaluate the algorithms.

The process of dynamic point removal requires maintaining
high recall in classifying both dynamic and static points, evalu-
ated by Dynamic Accuracy (DA%) and Static Accuracy (SA%),
respectively. Additionally, we use Associated Accuracy (AA%)
and Harmonic Accuracy (HA%) in [40] and [29] to provide a
comprehensive evaluation of both static and dynamic accuracy
in one metric, offering a holistic assessment of the algorithm’s
performance. The results are shown in Table IV. Although Bi-
M-Detector does not outperform in static or dynamic accuracy, it
achieves the most balanced classification of static and dynamic
points.

B. Ablation Study

To further verify the effectiveness of our framework, we
conducted ablation studies on two key components: the false
positive loop filter and moving object removal. The ATE results
of our framework without the loop filter demonstrate that its

TABLE III
EVALUATION OF DESCRIPTORS ON KITTI DATASET

absence deteriorates odometry accuracy and can even cause task
failure (sequences 00 and 02), as false positive loop closure
constraints make the pose graph ill-posed. This confirms that the
false positive loop filter module enhances both the accuracy and
robustness of our framework. Similarly, the ATE results of our
framework without the M-detector, shown in Table II, indicate
that the absence of this module results in lower accuracy. Thus,
moving object removal increases the accuracy of our framework.

We also conducted additional experiments by replacing both
the descriptor and the loop closure verification methods. Based
on the place recognition comparison results in Table III, we
selected SOLiD [38] descriptor to replace BTC. Additionally, we
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TABLE IV
EVALUATION OF THE MOVING OBJECTS REMOVAL METHODS

TABLE V
RMSE OF THE ATE(m) ON HELIPR DATASET

replaced our RANSAC-based loop closure verification method
with the widely used PCM [23]. The ATE verification results
on the KITTI dataset are presented in Table II. While LAMM-
SOLiD slightly outperformed LAMM on KITTI06, the differ-
ence was only 2 mm, which is negligible. LAMM-SOLiD gen-
erally performs at the same or lower level compared to LAMM.
LAMM-PCM showed minor improvements over LAMM on
KITTI05 but performed significantly worse on other sequences.
Therefore, we conclude that LAMM performs better than both
LAMM-SOLiD and LAMM-PCM in general.

C. Further Evaluation

To cover a variety of scenarios, we further test our framework
on datasets of different environments. Detailed characteristics
of each dataset are provided in Table I.

1) HeLiPR: HeLiPR is over 50 km, which is a large-scale
dataset that covers diverse environments, from urban cityscapes
to high-dynamic freeways, over a month. HeLiPR is the first
heterogeneous LiDAR dataset, providing different LiDARs’
(Spinning and Solid State) data of the same sequences for each
environment.

In our experiment, we conduct our merging framework on
sequences of Livox Avia and OS2-128 in two large-scale en-
vironment, Roundabout and Town, respectively. The Round-
about sequences feature three roundabouts with a prominently
large roundabout paired with an external hexagon. The Town
sequences showcase a juxtaposition of tight alleyways and ex-
pansive boulevards with multiple dynamic elements, including
pedestrians and vehicles. We use FAST-LIO2 to obtain the
odometry of each sequence and perform the merging of se-
quences of the same LiDAR type as well as the merging of
sequences of different LiDAR types.

The merging result of HeLiPR in Table V, demonstrates
the robustness of our method. In both the Roundabout and
Town scenes, the results include the merging of three sequences

collected by Ouster LiDAR, the merging of three sequences col-
lected by Avia LiDAR, the merging of all the six sequences. For
each combination, we achieve a globally consistent large map
with odometry accuracy comparable to the sequences before
merging. Due to page limit, the point cloud merging result of
HeLiPR is put in the Supplementary Material [41].

2) WildPlaces & Shenzhen Dataset: We also test our frame-
work on the WildPlaces dataset and the self-collected Shenzhen
dataset. WildPlaces is a large-scale dataset over 33 km in un-
structured, natural environments, which is especially challeng-
ing for place recognition and map merging tasks. Shenzhen is
self-collected in an urban area near Shenzhen North Railway
Station in Shenzhen, China, which is gathered using a backpack
device equipped with a Hesai 128-line LiDAR and four Hikvi-
sion cameras. After employing the R3LIVE [42] algorithm for
front-end odometry, the 6DoF pose data and colored point cloud
can be obtained as inputs for our algorithm. Due to page limit,
we put the implementation details and result analysis of these
experiments in the Supplementary Material [41].

V. CONCLUSION

In this paper, we propose a large-scale map merging method
for multi-agent mapping tasks. Our method is capable of merg-
ing maps from multiple agents equipped with different types of
LiDARs into a global consistent map in various scenarios. We
introduce a moving objects detection and removal module to
filter out dynamic points in the input point cloud, enhancing the
accuracy of place recognition. We also propose a false positive
loop filter module to reject false positive loop closures, ensuring
the accuracy of loop detection and optimization. We conduct
extensive experiments on public datasets and a self-collected
dataset to validate the effectiveness of our method. The results
show that our method outperforms the state-of-the-art map
merging method in terms of accuracy and robustness. In the
future, we plan to further improve the efficiency of our method
and extend it to more complex scenarios.
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