2302.14819v1 [cs.RO] 28 Feb 2023

arxXiv

ROG-Map: An Efficient Robocentric Occupancy Grid Map for
Large-scene and High-resolution LiDAR-based Motion Planning

Yunfan Ren, Yixi Cai, Fangcheng Zhu, Siqi Liang and Fu Zhang

Abstract— Recent advances in LiDAR technology have
opened up new possibilities for robotic navigation. Given
the widespread use of occupancy grid maps (OGMs) in
robotic motion planning, this paper aims to address the
challenges of integrating LiDAR with OGMs. To this
end, we propose ROG-Map, a uniform grid-based OGM
that maintains a local map moving along with the robot
to enable efficient map operation and reduce memory
costs for large-scene autonomous flight. Moreover, we
present a novel incremental obstacle inflation method that
significantly reduces the computational cost of inflation.
The proposed method outperforms state-of-the-art (SOTA)
methods on various public datasets. To demonstrate the
effectiveness and efficiency of ROG-Map, we integrate it
into a complete quadrotor system and perform autonomous
flights against both small obstacles and large-scale scenes.
During real-world flight tests with a 0.05 m resolution local
map and 30 m x30 mx6 m local map size, ROG-Map takes
only 29.8% of frame time on average to update the map
at a frame rate of 50 Hz (i.e., 5.96 ms in 20 ms), including
0.33 % (i.e., 0.66 ms) to perform obstacle inflation, demon-
strating outstanding real-world performance. We release
ROG-Map as an open-source ROS packageﬂ to promote
the development of LiDAR-based motion planning.

I. INTRODUCTION

LiDAR-based autonomous drones have seen signif-
icant advancements in various applications, such as
search and rescue, inspection, and autonomous explo-
ration. Compared to depth cameras with a sensing range
of about 3 ~ 5m, LiDAR sensors provide more precise
and long-range (typically ranging from tens to hundreds
of meters) three-dimensional measurements, extending
the perception range for autonomous UAVs. Addition-
ally, precise LiIDAR points enable autonomous drones to
avoid small obstacles [1]], making it possible for them
to operate in more challenging areas.

Occupancy mapping is an essential component of
an autonomous aerial system to navigate in unknown
environments. The occupancy grid map (OGM) is one
of the most promising map structures for real-time
occupancy mapping, as verified in [2]-[4]], with three
critical abilities carefully designed for motion planning
as follows. Firstly, ray casting is used to distinguish the
occupied, free, and unknown regions of the environment.

Y. Ren, Y. Cai, F. Zhu, and F. Zhang are with the Department
of Mechanical Engineering, University of Hong Kong {renyf,
yixicai, zhufc}@connect.hku.hk, {fuzhang}@hku.hk,
S. Liang is with School of Mechanical Engineering and Automation,
Harbin Institute of Technology sgliang@stu.hit.edu.cn.

Thttps://github.com/hku-mars/ROG-Map

Fig. 1. (a) Fast autonomous navigation against fine metal nets in
cluttered environments using Livox Mid360 LiDAR. The FPV camera
is only for visualization. (b) The occupied grids in ROG-Map with a
resolution of 0.05m during the flight. (c) The fine wire nets with a
width of 3mm. The drone is equipped with fully onboard sensing,
computation, and control. More details can be found in the attached
video at https://youtu.be/eDkwGXCea7w.

Secondly, an inflation technique is applied to the occu-
pied space to guarantee safety in consideration of the
drone’s size. Finally, OGM with high enough resolution
is aware of small obstacles, enabling navigation and
obstacle avoidance in complex environments.

Recent research in LiDAR-based motion planning has
posed new challenges. To fully utilize the capabilities
of LiDAR, which provides long-range and accurate
measurements, an ideal occupancy grid map (OGM)
for LiDAR is expected to maintain high resolution and
update over a long distance with high efficiency. How-
ever, these requirements result in significantly increased
computation load for map updates and obstacle inflation.
As a result, traditional octree-based [5]—[7] and hashing-
based [8] OGMs encounter great difficulties in their
real-time ability for LIDAR-based motion planning with
limited onboard computation resources. An alternative is
the uniform grid-based approach [2], [9], [10] which has
high computational efficiency. However, the extensive
memory consumption of uniform grid maps makes them
impractical for large-scale environments.

To address the issues in LiDAR-based motion plan-
ning, we propose ROG-Map, a uniform grid-based
OGM, which is computationally efficient in updating
map. Further, by extending [11] to the three-dimensional
cases, we propose a zero-copy map sliding strategy that
only maintains a local map around the robot, making
ROG-Map suitable for large-scene tasks. In addition, we
introduce a novel incremental inflation method that sig-
nificantly reduces the time required for obstacle inflation

thereby enhancing overall performance. In summary, the
contributions of this paper are as follows:

1) We propose ROG-Map, a computation-efficient
OGM package based on uniform grids. Its zero-
copy map sliding strategy enables it to maintain a
local map moving with the robot, making it suitable
to operate at high resolution and in large-scale
environments.

2) We propose a novel incremental inflation method
relying on the change of occupancy state, which
achieves a computational complexity of O(n) in
the number of changed grids. This method enables
faster obstacle inflation with consistent accuracy as
existing methods.

3) We compare the ROG-Map against SOTA base-
lines on public datasets, demonstrating its computa-
tion and memory efficiency superiority. Addition-
ally, ROG-Map is integrated into a LiDAR-based
quadrotor to conduct extensive real-world tests to
verify its outstanding real-world performance.

4) The ROG-Map is implemented as a ROS package
with carefully engineered work and is open-sourced
to promote LiDAR-based motion planning.

II. RELATED WORKS
A. Occupancy Grid Map

The occupancy grid map (OGM) is a promising
navigation map type for robots, capable of distinguishing
between occupied, free, and unknown environmental
areas through ray casting and handling sensor noise
and dynamic objects through probabilistic updates. Ex-
isting methods for implementing occupancy maps can
be divided into three main streams: octree-based [5]],
hash table-based [8]], and uniform grid-based [2]. We
begin by analyzing these methods from the perspective
of time complexity. Octree-based methods have a time
complexity of O(logn) for map operations such as
insertion, change, and query, where n represents the
number of nodes in the tree. In contrast, hash table-based
methods have a theoretical time complexity of O(1), but
the worst-case time complexity of the operations on the
map is O(n) due to hash conflicts [12]]. Moreover, since
both occupied and free grids are maintained on OGMs,
the number of hash conflicts increases with a denser
map at a higher resolution, which can reduce overall
performance. Considering the large number of map
operations required in ray casting and obstacle inflation
with LiDAR, both of these map types can suffer from
working in real-time with onboard computation devices.
In contrast, uniform grid-based OGMs [2] ensure that the
time complexity of all map operations is O(1) under all
circumstances and they are typically several times faster
than octree-based and hashing-based methods in map
operations. Next, we focus on the space complexity of
those methods. Hashing-based and octree-based occu-
pancy grid maps (OGMs) exhibit a space complexity of

O(n), where n denotes the number of nodes in the map.
Octree-based methods further optimize memory usage
by merging adjacent grids into larger ones, resulting in
higher memory efficiency compared to hashing-based
methods. Notably, both methods demonstrate a space
complexity that remains independent of the map size. In
contrast, uniform grid-based methods allocate memory
for all grids in the map and have a space complexity of
O(m), where m represents the map size. As the memory
consumption scales linearly with map size, this method
is not suitable for larger-scale missions. To address these
limitations, we propose ROG-Map, a uniform grid-based
approach for efficient map operations. To address the
space complexity issue, we introduce a zero-copy map
sliding strategy that keeps a robocentric local map with
a fixed size. In this way, memory consumption of ROG-
Map is constant, making it well-suited for missions in
large-scale environments.

B. Obstacle Inflation

In robot motion planning, inflating obstacles is a
widely used technique for generating the robot’s con-
figuration space [3[], [[13]. Modeling the robot as a
point mass in the configuration space can significantly
simplify and accelerate the motion planning algorithm.
Traditional obstacle inflation algorithms, such as the
one presented in [2f], compute the bounding box of all
point clouds in each input frame. After ray casting and
probability updating, they traverse all the grids in the
bounding box, marking occupied grids and their neigh-
bors as InflatedOccupied, and the remaining grids
as non-InflatedOccupied. However, for LIDAR point
clouds, the bounding box is often large, making map
traversal and inflation time-consuming. To address this
issue, Li et al. proposed an incremental update algorithm
based on grid state changes in [14]. This algorithm
uses a Rising Queue and a Falling Queue to track
grids that change from non-Occupied to Occupied and
from Occupied to non-Occupied, respectively. The
algorithm sets all grids in the Rising Queue and their
neighbors as InflatedOccupied. Then, for each grid
in the Falling Queue, it traverses all its neighbors and the
neighbors’ neighbors to decide if the grid and its neigh-
bor should be set as non-InflatedOccupied. However,
this process has a worst-case complexity of O(n?),
where n is the number of changed grids. In contrast,
we propose a novel incremental update scheme that
ensures O(n) computation complexity for all cases. Our
proposed method reduces the number of traversed grids
by 70 %~97 % on public datasets compared to [[14]],
significantly accelerating the obstacle inflation process.

III. OCCUPANCY GRID MAP

In this section, we introduce the fundamental concept
of the occupancy grid map, including the probabilistic
update process and the definition of grid states.

At the k-th update, the occupancy grid map (OGM)
takes the LiDAR position x;, € R3 and a scan of LIDAR
points Py as input and fuses the measurements using
Bayesian updating [5], [15]. If a LiDAR point falls in a
grid, it is considered a hit, while if the LiDAR beam
passes through a grid, it is considered a miss. Assuming
the map update process is Markovian, we estimate the
occupancy probability of a grid n given the history of
measurements up to time k, P(n|x;.;, P1.x), denoted as
Py.;(n) for brevity, by

Pri(n) =[1+P]"!

P :1 — Pk(l’l) 1-— Plzk_l(l’l) P(l’l) (1)
Py.(n) Pip—1(n) 1—P(n)

where P(n) is a prior probability, which is commonly

assumed as P(n) = 0.5 to indicate that the map has no

prior information of the occupancy state. By using the
log-odd notation

Py(n)) 7 @

the equation can be rewritten as
Lix(n) = L1x-1(n) + Li(n) 3)

Let the log-odds value of a hit be denoted as ly;; and
that of a miss as l;iss, then Lg(n) can be computed as
follows:

Ly, (n) = Nhit * thit + Mmiss * lmiss 4

where npi; and Ny represent the number of hits and
misses, respectively, for the grid at the k-th update. It
should be noted that [,,;ss is negative when ppiss < 0.5,
which means that the occupancy probability decreases
when a LiDAR beam passes through a grid.

Log-odds value

lmax “““““““““““““““““““ d
lOCC _____________________________ E i
- () Pmin Pfree pqllcc pnilax 1:
i | Probability
lf LEY
i /

lmin

Fig. 2. The log-odds function and the grid state corresponding to
the log-odds value. A grid changes from Unknown or KnownFree to
Occupied is called a rising grid (RG), while a grid changes from
Occupied to Unknown or KnownFree is called a failling grid (FG).

Since the log-odds operation is bijective, we only save
L1.,(n) in our map. As described in [16], to ensure the
adaptability in both static and dynamic enviroments, we
use a clamping update policy which defines an upper
and lower bound on P;.;(n). In this way, the occupancy

state is estimated by

Ly = Ly.k-1(n) + Li(n)
Ll:k(n) = max (min(Lta lmax)7 lmin)

&)

where lax and I, are the upper and lower bound on
the log-odds value.

KnownFree Imin < L(n) < lgee
state(n) = { Occupied loce < L(n) <lpax (6)
Unknown otherwise

The clamped log-odds function is shown in Fig.
A grid whose state changes from Unknown or
KnownFree to Occupied is called a rising grid (RG),
and a grid whose state changes from Occupied to
KnownFree or Unknown is called a falling grid (FG). The
concept of rising and falling grid detection is essential
for our novel incremental updating algorithms, which
will be detailed in Sec. [V-B]

IV. THE ROG-MAP

The ROG-Map is a uniform grid-based OGM with
two main parts in its update process, as shown in Alg][T}
1) Map sliding (Sec. [V-A), which involves updating
the local map origin and resetting the memory outside of
the local map, and 2) Map update (Sec. [V-B), which
includes probabilistic update and incremental obstacle
inflation.

Algorithm 1: Overview of ROG-Map Update

1 Notation: The robot’s position xy; Input point cloud
Pi; The update candidate queue C; Map sliding
threshold d; Current local map center o.

Input: xy, Pk

2 Algorithm

3 /* === Map Sliding === «/
4 if |Jo — x| > d then

5 UpdateLocalMapOrigin(xy);

6 ResetMemoryOutsideMap(xx);
7 end

8 /* === Map Update === x/

9 C = Raycasting(xx, P);

10 IncrementallInflation(C);

11 End Algorithm

A. Robocentric Local Maps

In most robotic navigation missions, the robots only
need to consider the surrounding environment. Our local
data storage is implemented inspired by [11]] but further
extends it to the three-dimensional case. We leverage
a three-dimensional circular buffer for non-destructive
shifting of the map’s origin (e.g., the robot’s position)
without copying any data in the memory.

Assume the local map size is s = (s3,5y,5:.) €
Z3+ and the discrete resolution is r. Without loss of
generality, we assume all elements of s are odd. All

data is saved in an array. For an arbitrary 3D point

P = (ps,py,p:) € R we define its global index
i9 = (i9,49,19), and its local index i' = (i}, dl,il).

In each dimension k € {z,y,z}, the indexes can be
computed by:

i =round(py/r)
il =i} mod s)
it =normalize(it)

where ! is an intermediate variable and normalize()
is an normalize function to ensure i\, € [0, s — 1]:

v—15] =>|3]
normalize(z,s) = qz+ 5] —[5] <z <[5
T+ 3L%J < — L%J
8)

where |-| is the floor function. Then we define the
indexing function:

x

toAddress(i') =il - s, - s, + l; cs. il (9)

The indexing process is shown in Fig. 3] With the
above mentioned formulation, we can calculate the ad-
dress of any point without knowing the local map’s
origin or the map boundary, making it suitable for
robotic motion planning in unbounded scene.

Fig. 3. The indexing process, which maps the unbounded global
index ii to a unique local index zfc without knowing the local map
origin.

The relationship between the local map and memory
is illustrated in Fig. @ we only show the map at the
robot’s height to ease the visualization. As the origin
of the map (i.e., the robot) moves, the area within the
yellow dashed box at t;_; goes out of the local map
at tg, hence its corresponding space in the memory
is reset. The reset space is then used to save newly
encountered area shown in the green dashed box. The
red dashed boxes indicate that the addresses of the
cells remain unchanged in memory before and after
the local map’s movement. To avoid frequent memory
reseting, the map sliding operation for updating the map
center and resetting the memory outside the map is only
executed when the distance between the robot and the
current center of the local map is greater than a threshold
d. It is worth noticing that the mapping from the global
to the local index is a surjective map, and each local
index corresponds to multiple global indexes. However,

the global index can be uniquely determined from the
local index given the map’s origin and the range of the
local map.

Memory

Local Map_

Occupied
rids.

aaaaaaa p
center

4

Obstacles

4

Fig. 4. The visualization of the local map and memory at the robot’s
height. The Unknown and KnownFree grids are colored in blue, while
the Occupied grids are colored in green. The dashed boxes in the
same colors indicate the same area in memory and local map.

B. Probabilistic Update and Incremental Inflation

The map updating process is presented in Alg. [2}
For the k-th scan of point cloud P, and the associated
position of the LiDAR xj, the first step in the map
updating process is ray casting, as shown in Line 3] To
accomplish this, we use a fast voxel traversal algorithm
to traverse all grids between each LiDAR point
and xj. Since multiple rays may cross the same grid,
we use a cache C to save all traversed grids and the
number of hits cp;; and misses cpiss following . This
batch update approach significantly reduces the number
of map operations in the following probabilistic update
process. The ray casting process is encapsulated in the
function C = raycasting(xy,Px). After performing
ray casting, we process all candidate grids in C (Lines &}
[[3). The log-odds probability is updated using (3) in
Line

Then we perform obstacle inflation by detecting the
rising grids (RGs) and falling grids (FGs) defined in Sec.
[} For each grid in the local map, an integer is used to
count how many neighbors of this grid are Occupied,
with the counter initially set to zero. In order to perform
obstacle inflation, it is necessary to traverse all neighbors
within the inflation distance of the current grid. Since
the relative positions of the neighbors and the current
grid are known, we can build a look-up table £ to save
all neighbor’s relative indexes and obtain the neighbor’s
index using Line[T7] For each RG, all neighbor counters
should increase by 1, and for each FG, the counter
should decrease by 1. This way, when a grid’s inflation
count is greater than or equal to one, it indicates that
at least one of its neighbors is Occupied and therefore,
the grid is considered as InflatedOccupied, as shown
in Fig. [{]Our incremental inflation strategy has a time
complexity of O(n) in all circumstances, where n is
the number of changed grids (both RGs and FGs).
Compared to [I4], which has a worst-case complexity

Algorithm 2: Local Map Update and Obstacle
Inflation

1 Notation: The robot’s position x;; Input point cloud
‘Pi; The updating candidates queue C; The spherical
update list L.

2 Algorithm

3 C < raycasting(xx, Pk);

4 foreach n € C do

5 Niast < 15

6 n < UpdateProbability(n);

7 if IsRaisingGrid(niast, n) then

8 | UpdateNeighborCounter(n,+1);
9

end
10 if IsFallingGrid(niast, n) then
11 | UpdateNeighborCounter(n,—1);
12 end
13 end

14 Algorithm End

15 Function UpdateNeighborCounter(n, c)
16 foreach p € £ do

17 Ntemp = N + P;
18 Ntemp.inflationCounter += c;
19 end

20 End Function

of O(n?), the proposed method reduces the number of
grid traversals in obstacle inflation by up to 70 % in the
New College Dataset and 97 % in HKU RSC (detailed

in Sec. [V).

BEEEEE

=

R

Fig. 5. The visualization of inflationCounter in the lo-
cal map at the robot’s height. The orange and blue grids are
InflatedOccupied and the gray grids are KnownFree or Unknown.

5[]
~[alw

3
.
7
7
6
3
21
s
6
5
4
3
1

—[elel=

SN Y, &
—fe e[e wlu el
| |

V. BENCHMARK COMPARISON

In this section, we compare the proposed ROG-Map
with four different types of baselines: 1) OctoMap [3],
which is an octree-based OGM; 2) HashMap, which
is a hash table-based OGM. Since we could not find
a suitable open-source hash-table based occupancy grid
map, we implemented one based on [8]], [[18]], [19]; 3)
UniformMap (2], which is an OGM with uniform grids
and fixed map origin; and 4) FIIMap [14]], a uniform
grid-based OGM that features an incremental obstacle
inflation approach. As the source code for [14] is not
publicly available, we implemented this approach by
integrating the incremental inflation algorithm described
in the paper into the UniformMap. We compare the
average computation time per frame ¢y (including map

update, and obstacle inflation), the computation time of
probabilistic update ¢,,, the number of operated grids in
obstacle inflation n;,¢, the time consumed for 100,000
random queries t,, and the memory consumption m. It
should be noted that 1) - 3) inflate obstacles by traversing
a local updating box and inflating all occupied grids
within it, following [2].

We compare the aforementioned methods on
two datasets: 1) New College Dataset an outdoor
dataset provided by [SH The scene size is
250mx161 mx33m. The resolution of all methods
is set to 0.2m following [5]. The obstacle inflation
distance is set to 0.2m, and the maximum raycast
distance is set to 20m. 2) HKU RS an indoor
dataset proposed by [20]. The size of the dataset is
74mx 42mx20m, and the mapping resolution is set
to 0.05m with a maximum raycast distance of 20 m.
The obstacle inflation distance is set to 0.2 m.

Since ROG-Map’s performance is independent of the
map size, it only needs to be set based on the available
memory size. In both of the two tests, we set it consid-
ering the distance used for ray casting (20 m), which is
40mx40mx12m.

The benchmark results are presented in Table [[} ROG-
Map performs similarly to other uniform grid-based
approaches in probabilistic update and random query,
but is several times faster than hashing-based and octree-
based methods. In terms of obstacle inflation, ROG-Map
requires only 0.13 %~0.87 % of the map operations of
traversal-based methods (i.e., OctoMap, HashMap, and
UniformMap) and only 2.67 %~18.12% compared to
FIIMap, resulting in significantly less time for obstacle
inflation and overall map updates. Notably, the HKU
RSC dataset was captured at a rate of 10Hz (i.e.,
100ms per frame), and ROG-Map only requires an
average of 68.187ms to process, highlighting its real-
time capability at a high resolution of 0.05m, while
none of the other approaches can run in real-time. From
the perspective of memory consumption, OctoMap is the
most memory-efficient, followed by HashMap. Uniform
grid-based methods have the same space complexity,
which increases linearly with the map size and is thus
inefficient compared to OctoMap and HashMap. ROG-
Map maintains a robocentric local map, resulting in a
constant space complexity, making it suitable for large-
scale missions with acceptable memory consumption.

VI. APPLICATIONS

The ROG-Map was integrated into a LiDAR-based
quadrotor platform to assess its real-world perfor-
mance. The on-board computing unit was an Intel NUC
equipped with a CPU i7-10710U. The platform weighed
1.5 kg and boasted a thrust-to-weight ratio over 4.0.

Zhttp://ais.informatik.uni-freiburg.de/projects/datasets/octomap/
3https://github.com/hku-mars/MARSIM

TABLE I

BENCHMARK COMPARISON

New College (Ave. 156.2 points per frame)

HKU RSC (Ave. 23157.6 points per frame)

ttot (MS) Gy (MS) Ming Ting (MS) tq(ms) m (MB) tor (ms) ¢y (ms) Nint ting (ms) tq(ms) m (MB)
OctoMap [5] 2.563 0983 34991.262 1.625 61.463 640.809 2255409 1502.598 27258042.859 752.811 182.306 186.7
HashMap 1.719 0218 34991.262 1.501 48.771 2101.527 2010.611 1165.105 27258042.859 845.506 152.322 2219.953
UniformMap [2] 0.224 0.095 34991.262 0.129 21.688 3519.195 133.514 70.897 27258042.859 62.617 23.896 11643.707
FlIMap [14] 0.119 0.106 1617.898 0.013 22708 3519230 267.990 63.759 1346163.411 204.231' 22.104 11678.153
ROG-Map 0.101 0.097 305.917 0.004 22981 64.387 68.187 67.416 36059.518 0.771 20.467 1046.243

! Following [14], we implemented incremental inflation for FIIMap using a queue structure. Although the number of accessed grids is smaller, using a
queue instead of an array significantly reduces the cache hit rate, resulting in a longer overall computation time.

Our perception module utilized the Livox Mid360
LiDAR and Pixhawk’s built-in IMU, running a modified
version [21]] of FAST-LIO2 [22], which provided high-
accuracy state estimation at a frequency of 100 Hz and
point clouds at a frequency of 50 Hz. We utilized the
method proposed in [23]] to calibrate the extrinsic and
time-offset between the LiDAR and IMU. For trajectory
tracking control, we employed an on-manifold model
predictive controller proposed in [24]. To achieve col-
lision avoidance, we utilized a modified version of our
previous work [9] as the local planner. Specifically, we
employed ROG-Map to identify collision-free paths and
generate safe flight corridors.

% ke 3.7m/s

: I

E D
v

<]

-

E \ Fine Nets
>

s |
= S
R

2 .

S Trajectory
>

[0m/s

Fig. 6. The Testl was conducted in a small dense forest of short trees
where three fine nets made of 3 mm thin metal wires was placed on the
flight course. Using ROG-Map, the autonomous quadrotor successfully
fly through the scene at a maximum speed over 3.7 m/s.

We conducted a total of eight successful experiments,
which were divided into two different categories. Due
to space constraints, we only present two of these tests
and other tests can be found in the attached videdf]
In all of the tests, ROG-Map was set to a size of
30mx30mx6m with a resolution of 0.05 m. The local
map update range was set to 15 m.

The first experiment, denoted as Test 1, was conducted
in a dense forest, as depicted in Fig. [§] We placed thin
metal nets to create a more challenging environment.
Using ROG-Map, the drone successfully detected the
nets and avoided collisions.

In 7est 2, we presented a multi-waypoints inspection
mission in a large-scale scene. The inspection goal
was specified by the user, and the drone automatically
navigated and avoided collisions while moving toward

“https://youtu.be/eDkwGXCea7w

the designated goal positions. The total travel distance
was 502.23m. The drone successfully traversed all
waypoints without a crash, demonstrating the usefulness
of our local map-shifting strategy. The generated point
cloud and the path of the drone are shown in Fig. [7]

Fig. 7. The point cloud view of Tesz2. The planned trajectory is high-
lighted in yellow. The total distance covered during the autonomous
flight was 502.23 m.

(a) Inflation Time (b) Inflation Grid Number (c) Total Time

10 ’ll 107 10"
10" .
10 10!
10°
10° 107
10°

10°

QDC’ Wa® “ﬁs\\g\w OC‘ON\@

Time (s) or Number

N N 0
M Y\,Aa\\N\% Oc\o‘m

gLty 20 2
e QOU'N\ \w‘*‘A (70‘°N\

Fig. 8. The computation time of ROG-Map in real-word flight and
the baseline running the recorded data on the same computer. The red
shaded area in (c) indicated the total time is less than 20 ms, showing
ROG-Map can work with LiDAR input in real-time.

The computation time of ROG-Map is presented in
Fig 8] We also run the flight dataset of Tesr 2 using
Octomap and Hashmap. We didn’t test UniformMap
since the memory consumption is beyond the system
memory on the onboard computer. As the point cloud
input has a frequency of 50Hz (i.e., 20ms per frame),
neither HashMap nor Octomap can achieve real-time
as shown if Fig Ekc), where the red shaded area is
computation time less than 20 ms. Our ROG-Map only
takes an average of 5.96ms in Test/ and 3.46ms in
Test2 per frame for local map updates, including only
0.172ms in Test/ and 0.06 ms in Test2 for obstacle

inflation, demonstrating its high efficiency for robotic
planning missions.

VII. CONCLUSION AND FUTURE WORK

In this paper, we proposed ROG-Map as a solution for
using occupancy grid maps (OGM) with LiDAR sensors.
We used a uniform grid-based OGM to maintain a local
map surrounding the robot with a zero-copy map sliding
strategy to ensure computational and memory efficiency.
Furthermore, we proposed a novel incremental obstacle
inflation method that significantly reduced the computa-
tion time for inflation and improved the overall mapping
performance. Benchmark comparisons on various public
datasets demonstrated its advantages over state-of-the-
art (SOTA) methods in terms of computation time and
memory consumption. Finally, we integrated ROG-Map
into a complete quadrotor system and demonstrated its
capability for large-scene high-resolution LiDAR-based
motion planning missions.

One limitation of ROG-Map is that as the robot moves
away from a region, the occupancy information about the
region is cleared. This spatial forgetting mechanism does
not affect the robot’s performance in obstacle avoidance.
However, for other applications, such as autonomous
exploration that requires maintaining information about
the entire environment, ROG-Map is no longer suitable.
One possible solution is to use sparse data structures
to record the global map information while using ROG-
Map to achieve real-time updates and maintain local map
information. In the future, we plan to explore a hybrid
map framework that combines global and local maps to
support a broader range of tasks.

ACKNOWLEDGMENT

The authors gratefully acknowledge the funding pro-
vided by DJI and the equipment support provided by
Livox Technology during this project. The authors would
also like to express their gratitude to Sifan Tang for
recording the experiments and to Longji Yin, Yuhan Xie
and Fanze Kong for their valuable discussions.

REFERENCES

[1] Fanze Kong, Wei Xu, Yixi Cai, and Fu Zhang. Avoiding dynamic
small obstacles with onboard sensing and computation on aerial
robots. IEEE Robotics and Automation Letters, 6(4):7869-7876,
2021.

[2] Xin Zhou, Zhepei Wang, Hongkai Ye, Chao Xu, and Fei Gao.
EGO-Planner: An ESDF-free gradient-based local planner for
quadrotors. [EEE Robotics and Automation Letters, 6(2):478—
485, 2021.

[3] Yunfan Ren, Fangcheng Zhu, Wenyi Liu, Zhepei Wang, Yi Lin,
Fei Gao, and Fu Zhang. Bubble planner: Planning high-speed
smooth quadrotor trajectories using receding corridors. In 2022
IEEE/RSJ International Conference on Intelligent Robots and
Systems (IROS), pages 6332-6339. IEEE, 2022.

[4] Boyu Zhou, Fei Gao, Jie Pan, and Shaojie Shen. Robust real-
time UAV replanning using guided gradient-based optimization
and topological paths. In 2020 IEEE International Conference
on Robotics and Automation, pages 1208-1214. IEEE, 2020.

[5]

[6

i}

—
;‘

[8

[t}

[9

—

[10]

(11]

[12
(13

[14]

[15]

(16]

[17]

[18]

(19]

[20]

[21]

[22]

[23

[t

[24]

Armin Hornung, Kai M Wurm, Maren Bennewitz, Cyrill Stach-
niss, and Wolfram Burgard. OctoMap: An efficient probabilistic
3d mapping framework based on octrees. Autonomous Robots,
34(3):189-206, 2013.

Daniel Duberg and Patric Jensfelt. Ufomap: An efficient proba-
bilistic 3d mapping framework that embraces the unknown. /[EEE
Robotics and Automation Letters, 5(4):6411-6418, 2020.

Nils Funk, Juan Tarrio, Sotiris Papatheodorou, Marija Popovi¢,
Pablo F Alcantarilla, and Stefan Leutenegger. Multi-resolution
3d mapping with explicit free space representation for fast and
accurate mobile robot motion planning. IEEE Robotics and
Automation Letters, 6(2):3553-3560, 2021.

Matthias NieBner, Michael Zollhofer, Shahram Izadi, and Marc
Stamminger. Real-time 3d reconstruction at scale using voxel
hashing. ACM Transactions on Graphics (ToG), 32(6):1-11,
2013.

Yunfan Ren, Siqi Liang, Fangcheng Zhu, Guozheng Lu, and
Fu Zhang. Online whole-body motion planning for quadrotor
using multi-resolution search. In 2023 IEEE International
Conference on Robotics and Automation (ICRA). IEEE, 2023.
Boyu Zhou, Yichen Zhang, Xinyi Chen, and Shaojie Shen. Fuel:
Fast uav exploration using incremental frontier structure and
hierarchical planning. [EEE Robotics and Automation Letters,
6(2):779-786, 2021.

Péter Fankhauser and Marco Hutter. A Universal Grid Map
Library: Implementation and Use Case for Rough Terrain Navi-
gation. In Anis Koubaa, editor, Robot Operating System (ROS) —
The Complete Reference (Volume 1), chapter 5. Springer, 2016.
Christer Ericson. Real-time collision detection. Crc Press, 2004.
Sikang Liu, Kartik Mohta, Nikolay Atanasov, and Vijay Kumar.
Search-based motion planning for aggressive flight in se (3).
IEEE Robotics and Automation Letters, 3(3):2439-2446, 2018.
Yong Li, Lihui Wang, Yuan Ren, Feipeng Chen, and Wenxing
Zhu. Fiimap: Fast incremental inflate mapping for autonomous
mav navigation. Electronics, 12(3):534, 2023.

H. Moravec and A. Elfes. High resolution maps from wide angle
sonar. In Proceedings. 1985 IEEE International Conference on
Robotics and Automation, volume 2, pages 116-121, 1985.
Manuel Yguel, Olivier Aycard, and Christian Laugier. Update
policy of dense maps: Efficient algorithms and sparse represen-
tation. In Field and service robotics, volume 42, pages 23-33.
Springer, 2008.

John Amanatides, Andrew Woo, et al. A fast voxel traversal
algorithm for ray tracing. In Eurographics, volume 87, pages
3-10, 1987.

Jiarong Lin and Fu Zhang. R3live++: A robust, real-time,
radiance reconstruction package with a tightly-coupled lidar-
inertial-visual state estimator. arXiv preprint arXiv:2209.03666,
2022.

Jiarong Lin, Chongjiang Yuan, Yixi Cai, Haotian Li, Yuying
Zou, Xiaoping Hong, and Fu Zhang. Immesh: An immedi-
ate lidar localization and meshing framework. arXiv preprint
arXiv:2301.05206, 2023.

Fanze Kong, Xiyuan Liu, Benxu Tang, Jiarong Lin, Yunfan Ren,
Yixi Cai, Fangcheng Zhu, Nan Chen, and Fu Zhang. Marsim: A
light-weight point-realistic simulator for lidar-based uavs. arXiv
preprint arXiv:2211.10716, 2022.

Fangcheng Zhu, Yunfan Ren, Fanze Kong, Huajie Wu, Siqi
Liang, Nan Chen, Wei Xu, and Fu Zhang. Decentralized lidar-
inertial swarm odometry. In 2023 IEEE International Conference
on Robotics and Automation (ICRA). IEEE, 2023.

Wei Xu, Yixi Cai, Dongjiao He, Jiarong Lin, and Fu Zhang.
Fast-lio2: Fast direct lidar-inertial odometry. IEEE Transactions
on Robotics, 2022.

Fangcheng Zhu, Yunfan Ren, and Fu Zhang. Robust real-
time lidar-inertial initialization. In 2022 IEEE/RSJ International
Conference on Intelligent Robots and Systems (IROS), pages
3948-3955. IEEE, 2022.

Guozheng Lu, Wei Xu, and Fu Zhang. On-manifold model
predictive control for trajectory tracking on robotic systems.
IEEE Transactions on Industrial Electronics, 2022.

	I Introduction
	II Related Works
	II-A Occupancy Grid Map
	II-B Obstacle Inflation

	III Occupancy Grid Map
	IV The ROG-Map
	IV-A Robocentric Local Maps
	IV-B Probabilistic Update and Incremental Inflation

	V Benchmark Comparison
	VI Applications
	VII Conclusion and Future Work
	References

