
IEEE ROBOTICS AND AUTOMATION LETTERS. PREPRINT VERSION. ACCEPTED JULY, 2023 1

Integrated Planning and Control for Quadrotor
Navigation in Presence of suddenly appearing

Objects and Disturbances
Wenyi Liu*, Yunfan Ren* and Fu Zhang

Abstract—Autonomous flight for quadrotors in environments
with suddenly appearing objects and disturbances still faces
significant challenges. In this work, we propose an integrated
planning and control framework called IPC. Specifically, we
design a framework consisting of a lightweight frontend and an
MPC backend. On the frontend, we employ the A* algorithm to
generate the reference path on a local map. On the backend,
we model the trajectory planning and control problem as a
linear model predictive control (MPC) problem. In the MPC
formulation, the quadrotor is modeled as a high-order integral
system (a linear system) to follow the reference path from the
frontend. We use a series of convex polyhedrons (i.e., Safe Flight
Corridor, SFC) to represent the free space in the environment
and employ the multiple hyperplanes of the polyhedrons as a
linear inequality constraint of the MPC problem to ensure flight
safety. In this way, the linear MPC generates control actions
that strictly meet the safety constraints in a short time (2ms-
3.5ms). Then, the control actions of the linear MPC (i.e., jerk)
are transformed to the actual control commands (i.e., angular
velocity and throttle) through the differential flatness of the
quadrotor. Since the MPC computes the control actions directly
according to the obstacles and quadrotor’s state at a rather high
frequency (i.e., 100Hz), it improves the quadrotor’s response
speed to dynamic obstacles and disturbance rejection ability
to external disturbances. In simulation experiments involving
avoiding a suddenly appearing object, our method outperforms
state-of-the-art baselines in terms of success rate. Furthermore,
we validate our method in real-world environments with dynamic
objects and disturbances using a fully autonomous LiDAR-based
quadrotor system, achieving autonomous navigation at velocities
up to 5.86m/s in dense forests. Our IPC is released as a ROS
package on GitHub1 as open source software.

Index Terms—Aerial Systems: Applications, Integrated Plan-
ning and Control, Collision Avoidance;

I. INTRODUCTION

IN recent years, quadrotors have rapidly developed and
have found widespread applications in urban logistics,

inspections, and multi-drone formation flights. These scenarios
often involve suddenly appearing objects and disturbances,
such as tossed objects, flying birds, and wind gusts, which
significantly challenge the reliability and effectiveness of
quadrotors in completing flight tasks. To ensure safe flight
in these scenarios, quadrotors must respond rapidly to these

Manuscript received: April, 7, 2023; Revised June, 30, 2023; Accepted
July, 30, 2023. This paper was recommended for publication by Editor Hanna
Kurniawati upon evaluation of the Associate Editor and Reviewers’ comments.

*These two authors contributed equally to this work.
Corresponding author: Fu Zhang.
W. Liu, Y. Ren, and F. Zhang are with the Department of

Mechanical Engineering, University of Hong Kong {liuwenyi,
renyf}@connect.hku.hk, fuzhang@hku.hk

Digital Object Identifier (DOI): see top of this page.
1https://github.com/hku-mars/IPC

(a)

(b)

quadrotor
suddenly

appearing

object

(c)
2.5m0m

1.0s 1.3s
1.6s

2.3s 2.6s
2.8s

3.1s

(d)

Fig. 1. Indoor flight with suddenly appearing object (Sec. IV-B1). (a)
Composite images of the flight. (b) The generated point cloud map during
the flight. (c) Average computation time for each step and total latency of
IPC in this flight. (d) The position and velocity of the quadrotor during the
flight. The dotted line represents the time when the suddenly appearing object
appears in front of the quadrotor. More details can be found in the attached
video at https://youtu.be/EZFxTkqqat4

environmental changes and disturbances, and plan high-quality
trajectories that satisfy quadrotors’ dynamics.

Existing quadrotor navigation approaches [1–7] typically
employ a planning and control separation framework. In this
framework, the planner generates a trajectory that adheres
to the dynamical constraints within a safe space, while the
controller produces control signals to converge system errors
based on the errors between state feedback and trajectory refer-
ence. However, this framework could lead to two issues: firstly,
the multi-stage pipeline results in increased system latency.
Some soft-constraint-based methods [1, 2] can reduce the
latency by planning trajectories in very short time, but when
faced with suddenly appearing objects, the soft constraints may
cause the trajectory optimization results to be trapped in local
minima, leading to the trajectory colliding with the obstacle.
Secondly, the disturbance rejection issue arises in this planning
and control separation framework. The planner does not con-
sider disturbances, resulting in an inability to respond promptly
to disturbances (e.g., wind gusts), subsequently affecting the
safe flight of the quadrotor.

To address these problems, we propose an Integrated
Planning and Control framework called IPC. Overall, the
contributions of our method are summarized as follows:

This article has been accepted for publication in IEEE Robotics and Automation Letters. This is the author's version which has not been fully edited and

content may change prior to final publication. Citation information: DOI 10.1109/LRA.2023.3311358

© 2023 IEEE. Personal use is permitted, but republication/redistribution requires IEEE permission.
See https://www.ieee.org/publications/rights/index.html for more information.

2 IEEE ROBOTICS AND AUTOMATION LETTERS. PREPRINT VERSION. ACCEPTED JULY, 2023

1) We propose a novel integrated planning and control
framework for quadrotors to achieve autonomous nav-
igation in unknown and dynamic environments. The
framework consists of a frontend that searches a reference
path and a backend that solves the trajectory optimization
and control in one step.

2) We propose an efficient, low-latency MPC for integrated
quadrotor planning and control. Notably, the MPC de-
couples the nonlinear quadrotor dynamics into a linear
one through differential flatness. Along with the linear
corridor constraints and control constraints, we formulate
a linear MPC that can be solved in a few milliseconds.
The computed control actions are then transformed using
differential flatness into angular velocity commands (i.e.,
the actual control commands) for execution.

3) We compared our method with state-of-the-art baselines
in a simulation experiment to avoid suddenly appearing
object and demonstrated the superiority of our approach
in terms of the success rate.

4) Employing a LiDAR-based fully autonomous quadrotor
system, we validated our method in suddenly appearing
object avoidance experiments, showcasing its low latency
and robust performance. Moreover, our approach demon-
strated strong disturbance rejection capabilities during
autonomous flight tests in environments with external
forces and wind disturbances. Furthermore, the proposed
method was validated through autonomous navigation
in cluttered environments, achieving flight speeds up to
5.86m/s in dense woods.

II. RELATED WORKS

A. Corridor-based Trajectory Planning

In recent years, corridor-based trajectory planning methods
[3, 5–11] have gained popularity for ensuring safe quadrotor
flights. Chen et al. [8] divide the space into the OctoMap
structure and use free grids directly as corridor constraints. The
sphere-shaped corridor has also become popular because each
sphere only introduces one constraint in trajectory generation
and it can be rapidly obtained through Nearest Neighbor
Search (NN-Search) using a KD-tree structure. Gao et al.[9]
propose generating sphere-shaped corridors within the RRT*
framework. Ren et al.[3] utilize a sampling-based method to
produce spheres while simultaneously maximizing the volume
of the corridor and the volume of the overlapping area of
adjacent spheres. However, both cube-shaped and sphere-
shaped representations may not efficiently represent the free
space in cluttered environments, leading to the following
trajectory generation problems over-constrained. In contrast,
polyhedrons are commonly used as they can represent more
complex free space. Liu et al.[6] generate free convex poly-
hedrons through a region inflation method, also known as
convex decomposition. The hyperplanes of the polyhedrons
are then added to subsequent trajectory optimization problems
as hard constraints to ensure safe quadrotor flight. Similar to
Liu et al. [6], we also employ convex polyhedrons to represent
the free space. We formulate the MPC-based planning and
control problem as a quadratic programming (QP) problem and
enforce the hyperplanes of the polyhedral corridor as linear

inequality constraints to achieve collision avoidance robustly
and efficiently.

B. Model Predictive Control-based Collision Avoidance

Model Predictive Control (MPC) is a popular strategy for
implementing feedback control loops in various systems, as it
fully considers input, state, and output constraints. [12] pro-
poses an adaptive trajectory tracking algorithm to compensate
the uncertainties in quadrotor models. [13] introduces a data-
driven MPC using neural networks, leading to a significant
enhancement in quadrotor control effectiveness. [14] presents
a Perception-Aware MPC framework that enables simultane-
ous optimization of perception and control. Although some
methods, such as Local Model Predictive Contouring Control
[15] and Dynamic Control Barrier Function-based MPC [16],
have achieved pedestrian avoidance for autonomous vehicles
in unstructured scenarios, the computation complexity of these
methods increases with the number of obstacles, resulting in
high computation time in complex environments. Furthermore,
these methods are mainly designed for ground vehicles moving
on 2D, hence not suitable for quadrotor systems moving in
full 3D space. In structured indoor scenarios, MPC-based
collision avoidance methods have been applied to quadrotor
platforms. Neunert et al.[17] achieved flight through a tilted
window in a motion capture system using Sequential Lin-
ear Quadratic (SLQ) to solve unconstrained nonlinear MPC
problems. However, their method can only avoid static ob-
stacles in known environments. Small et al.[18] implemented
autonomous navigation of a quadrotor in a motion capture
system with only one obstacle. They incorporated collision
avoidance constraints into the cost function and used a warm-
start method to improve computation efficiency. However, their
method may fail in unstructured scenarios as the warm-start
method may require more iterations to converge when the
initial trajectory is infeasible, leading to a significant increase
in computation time. Lindqvist et al. [19] wirelessly controlled
a quadrotor to avoid dynamic objects, such as balls and
pedestrians, using an external computing device under a mo-
tion capture system. They formulated the collision avoidance
problem into a nonlinear MPC problem with hard constraints,
which is computationally heavy and not suitable for real-world
navigation in unknown and unstructured environments with
onboard computation devices. Our framework is similar to
[20], which uses a similar MPC framework with linear system
and polyhedral corridor constraints to plan the trajectories
of UAV swarms. However, [20] only considered verification
of UAV swarms in simulation, while our framework aims to
fullfill autonomous navigation of quadrotor in real-world envi-
ronments, such as cluttered indoor and outdoor environments
and environments with dynamic objects and disturbances.

Compared to [1–12] for autonomous quadrotor navigation,
which first optimize a smooth trajectory and subsequently
track the trajectory, our IPC achieves trajectory optimization
and tracking control in one step through an efficient MPC. The
design of our MPC also differs substantially from existing
MPC methods in literature. Our MPC both plans the UAV
trajectory and controls the UAV movements in unknown and
dynamic environments with external disturbances. In contrast,

This article has been accepted for publication in IEEE Robotics and Automation Letters. This is the author's version which has not been fully edited and

content may change prior to final publication. Citation information: DOI 10.1109/LRA.2023.3311358

© 2023 IEEE. Personal use is permitted, but republication/redistribution requires IEEE permission.
See https://www.ieee.org/publications/rights/index.html for more information.

LIU et al.: INTEGRATED PLANNING AND CONTROL FOR QUADROTOR NAVIGATION 3

Mid-360

Lidar

Autopilot

IMU

Angular

Velocity

Loop

Sec.III-C
SFC Generation

Lidar

Inertial

Odometry

Sec.III-D
MPC-based Planning

and Control

Sec.III-A
Local map

Construction

Sec.III-B
Reference Path

Searching

Sec.III-E
Differential Flatness

Transform

Fig. 2. The overall quadrotor navigation structure. IPC is an integrated
planning and control framework consisting of the frontend and backend. By
inputting the raw sensor data and localization results, the IPC outputs the
angular velocity reference and throttle commands that are further tracked by
the UAV onboard autopilot.

[14] proposes perception-aware MPC but does not consider
obstacle avoidance. [17–19] utilize NMPC but only achieve
obstacle avoidance flight in known indoor environments. [7]
applies NMPC with external force modeling, but it is used
as a trajectory planner and requires a subsequent tracking
controller. [13] uses Neural MPC as a controller to reduce
trajectory tracking error.

III. MPC-BASED INTEGRATED PLANNING AND CONTROL

The overall quadrotor navigation structure is illustrated in
Fig. 2. LiDAR and IMU sensors provide data for LiDAR-
inertial Odometry, which estimates the quadrotor’s full state.
Based on the odometry and raw cloud, our Integrated Plan-
ning and Control (IPC) framework directly generates angular
velocity and throttle commands. Specifically, the IPC frame-
work comprises two main components: the frontend and the
backend. The frontend consists of Local Map Construction
(Sec. III-A) and Reference Path Searching (Sec. III-B). When
receiving the current point clouds (50Hz), the local map
will be constructed based on localization results (200Hz, the
same as the IMU data). If the obstacle intersects with the
reference path or a new user-defined target is received, the
Reference Path Searching will be triggered to regenerate the
new collision-free reference path.

The backend runs in a loop at a constant frequency (100Hz)
and consists of three steps: Safe Flight Corridor (SFC) Gen-
eration (Sec. III-C), MPC-based Planning and Control (Sec.
III-D) and Differential Flatness Transform (Sec. III-E). On
the reference path in the local map, a series of overlapping
polyhedrons (i.e., SFC) will be generated and used as hard
linear constraints for the next step in the MPC problem.
At the same time, we generate the reference state of the
MPC inside the SFC. By solving the MPC problem and
using differential flatness to transform the MPC optimization
variables into actual angular velocity references, the quadrotor
can directly control the rotor speed through a lower-level
angular velocity controller. This way enables the complete
motion of the quadrotor in free space.

The symbols used in this paper are defined in Table I. In the
system model presented in this paper, the system state of the
quadrotor is denoted by x = [p,v,a]T and the system input
is represented by u = j.

A. Local Map Construction
Following our previous work ROG-Map [21], we build

a robot-centric local map using uniform grids. Considering

TABLE I
NOMENCLATURE

p position vector px, py , pz in the world frame
v velocity vector vx, vy , vz in the world frame
a acceleration vector ax, ay , az in the world frame
j jerk vector jx, jy , jz in the world frame
N horizon length in the MPC
△t time step of the MPC

the high-precision and low-noise characteristics of LiDAR
measurements, we propose a temporal forgetting mechanism
to update the occupancy status of the grid map and handle
dynamic obstacles, instead of using raycasting, thus reducing
mapping latency. In the local map, we store the timestamp of
the last LiDAR hit for each grid cell, initializing the timestamp
for all grid cells to negative infinity. To query the state of a
grid cell, we compare its hit time thit with the current time
tcur. If the difference between tcur and thit is greater than a
predetermined forgetting threshold tthr, the cell is considered
free; otherwise, it is considered occupied. For occupied cells,
we utilize the incremental inflation strategy in [21] to inflate
the obstacle by the quadrotor’s radius to ensure safety.

B. Reference Path Searching

To guide the quadrotor to a given target, we search for a
collision-free reference path on the local map (Sec. III-A).
We opted for A* [22] to search collision-free path although
other popular path planning methods such as RRT* could
also work. A* has a more deterministic computation time and
optimal path length, which would render a more predictable
performance. As shown in Fig. 3, once the A* path on the
grid map has been determined (yellow path), we start from
the first node in the path and search for the farthest node
on the path that is visible from the first node (i.e., without
being occluded by occupied cells), then we connect the two
nodes and repeat the process from the new node until the target
node is reached. In this way, we obtain a piecewise shortest
reference path (green path).

current position target obstacle

inflated obstacle A* path

reference path

local goal

𝐩ref,𝑵SFC
reference

position 𝐩ref,𝒏

Fig. 3. Reference path searching and SFC generation in a simplified 2D case.

C. SFC Generation

With the local map (Sec. III-A) and a collision-free refer-
ence path (Sec. III-B), the backend runs at a constant 100Hz
to track the reference path. The backend starts with a safe
flight corridor (SFC) generation. We directly adopt the method
proposed in [6] to partition the free space along the reference
path, starting from the position on the reference path that is
closest to the UAV current position, into overlapping convex

This article has been accepted for publication in IEEE Robotics and Automation Letters. This is the author's version which has not been fully edited and

content may change prior to final publication. Citation information: DOI 10.1109/LRA.2023.3311358

© 2023 IEEE. Personal use is permitted, but republication/redistribution requires IEEE permission.
See https://www.ieee.org/publications/rights/index.html for more information.

4 IEEE ROBOTICS AND AUTOMATION LETTERS. PREPRINT VERSION. ACCEPTED JULY, 2023

polyhedrons (see Fig. 3). A polyhedron is represented by a set
of hyperplanes (C,d), which constrains a position p as:

C · p− d ≤ 0 (1)

where C is a K × 3 matrix representing the normal vectors
of the hyperplanes of the polyhedron, d is a K × 1 vector
representing the constants of the hyperplanes, and K is the
number of hyperplanes of a convex polyhedron.

In our current implementation, we limit the maximum
number of polyhedrons to two, which is sufficient considering
only local trajectory is planned. Moreover, the polyhedron
representing free space is generated based on maps that contain
occupied cells due to both static and dynamic obstacles in
the last tthr seconds (see Sec. III-A). This uniform treatment
does not distinguish dynamic objects, nor track or predict
their movements. The lack of dynamic objects tracking and
prediction are compensated by the high planning and control
rate of our overall framework, which can avoid dynamic
objects in a purely reactive manner.

D. MPC-based Planning and Control
The second step of the backend is a model predictive

controller (MPC), which integrates planning and control into
one framework. The goal of the MPC is to guide the quadrotor
along the reference path (Sec. III-B) at preset reference speed
vr, while keeping the UAV in the free space represented
by SFC (Sec. III-C) and satisfying necessary constraints.
Ultimately, MPC yields optimal control actions and a smooth
local trajectory.

In order for the MPC to follow the reference path (Sec.
III-B), we sample N , the horizon length of the MPC, reference
positions pref,n, n = 1, 2, ..., N , on the reference path. The
first reference position pref,1 is the position on the reference
path that is closest to the current UAV position podom, which
is estimated by an odometry, and the last position pref,N is
the position on the reference path that is vr ∗N ∗∆t (with ∆t
being the model discretization time in MPC). If the calculated
pref,N falls outside the SFC, we modify it to be the farthest
waypoint within the SFC (the movement of yellow star in Fig.
3). Similarly, if pref,N falls out of the reference path, we fix it
to the end of the reference path. With the determined pref,N ,
the rest reference positions pref,n are sampled uniformly on
the reference path between pref,1 and pref,N .

With the reference positions, our MPC is formulated as

min
uk

N∑
n=1

(∥(pref,n − pn)∥2Rp
+ ∥un−1∥2Ru

)

+∥vN∥2Rv,N
+ ∥aN∥2Ra,N

+

N−2∑
n=0

∥un+1 − un∥2Rc

(2a)

s.t. xn = fd(xn−1,un−1), n = 1, 2, · · · , N (2b)

x0 = [podom,vodom,aodom]T (2c)
|vi,n| ≤ |vi,max|, |ji,n| ≤ |ji,max|, i = x, y, z (2d)
|aj,n| ≤ |aj,max|, j = x, y (2e)
az,min ≤ az,n ≤ az,max (2f)
Cn · pn − dn ≤ 0 (2g)

where the cost function (2a) consists of ∥pref,n − pn∥2Rp
,

the reference path following error, ∥un−1∥2Ru
, the control

efforts, ∥un+1 − un∥2Rc
, the control variation, ∥vN∥2Rv,N

, the
terminal velocity, and ∥aN∥2Ra,N

, the terminal acceleration.
The constraints in the formulated MPC problem (2) consist

of three. The first one is the model constraints (2b) subject
to initial state (2c) estimated by an odometry. To reduce the
MPC complexity, we adopt a third-order integrator for the
quadrotor:

pn = pn−1 +△t · vn−1 +
1

2
△t2 · an−1 +

1

6
△t3 · jn−1

vn = vn−1 +△t · an−1 +
1

2
△t2 · jn−1

an = an−1 +△t · jn−1

xn = [pn,vn,an]
T , un = jn

(3)

The second constraints are the kinodynamic constraints
(2d-2f), which ensure the quadrotor’s dynamics are within
feasible limits. Specifically, we impose upper and lower limit
constraints on the velocity, acceleration, and jerk. We set an
independent lower limit on az,n to constrain the acceleration
in the negative direction of the quadrotor’s z-axis, ensuring
that it does not exceed the gravitational acceleration g.

The third constraints are the corridor constraints (2g), which
ensure the quadrotor to remain within the safe flight corri-
dor hence avoiding collision with both dynamic and static
obstacles in the environments. In (2g), the predicted UAV
position pn is constrained to lie in the polyhedrons (Cn,dn)
that contain pref,n. If pref,n lies in the overlapped area
between two polyhedrons, (Cn,dn) are the union of the two
polyhedrons parameters.

The optimization problem (2) involves a quadratic cost
and linear constraints in terms of the optimization variables
U = [u0,u1, ...,uN−1]

T , which presents a standard quadratic
programming (QP) problem. This QP problem is solved by
OSQP-Eigen, a C++ library that depends on OSQP and
Eigen3. The resulting solution generates the optimal control
actions and local trajectory according to the cost function.

When the MPC (2) is solved successfully at the step k, a
series of optimal control actions U = [u0,u1, ...,uN−1]

T is
recorded, and the u0 from U is used as the control action
for this step. If MPC cannot be solved at the step k, the time
interval ∆T between the last successful step and the failed
step k is calculated. Then the u⌊∆T/∆t⌋ from the previously
successful control actions U is used as the control action
for this step. This control strategy allows for adaptability to
failures in MPC and ensures that a reasonable control action
is still taken even if MPC cannot be solved.

E. Differential Flatness Transform

After solving the MPC problem (Sec. III-D), the optimal
control actions j, defined in the world frame, cannot be
directly applied to the quadrotor in the real world because it
is not the commands to the quadrotor actuators (i.e., motors).
Therefore, we utilize the differential flatness property [23] of
the quadrotor to transform the jerk j along with other states
such as acceleration t into angular velocity reference. The

This article has been accepted for publication in IEEE Robotics and Automation Letters. This is the author's version which has not been fully edited and

content may change prior to final publication. Citation information: DOI 10.1109/LRA.2023.3311358

© 2023 IEEE. Personal use is permitted, but republication/redistribution requires IEEE permission.
See https://www.ieee.org/publications/rights/index.html for more information.

LIU et al.: INTEGRATED PLANNING AND CONTROL FOR QUADROTOR NAVIGATION 5

angular velocity reference is finally tracked by lower-level
controllers implemented onboard the autopilot to produce the
motor commands.

zB =
t

∥t∥
, t = [ax, ay, az + g]T (4a)

xC = [cosϕ, sinϕ, 0]T (4b)

yB =
zB × xC

∥zB × xC∥
, xB = yB × zB (4c)

hw =
(j− (zB · j)zB)

∥a∥
(4d)

pr = −hw · yB , qr = hw · xB (4e)

rr = (ϕr − ϕ) · zB · (0, 0, 1)T (4f)

where g represents the gravitational acceleration, ϕr and ϕ
are the reference and feedback of the quadrotor’s yaw angle
in the world frame, (pr, qr, rr) denote the pitch, roll and yaw
angular velocity reference in the body frame.

In addition, we also need to calculate the throttle Tr of the
quadrotor to control its motion along the Z-axis:

Tr = CT · ∥t∥ (5)

where CT is the throttle thrust coefficient that is calibrated
beforehand.

IV. EXPERIMENTS

A. Benchmark Comparison
In this section, we compare IPC with two state-of-the-

art (SOTA) planning algorithms: 1) Fast-Planner, which
is based on the Euclidean Signed Distance Field (ESDF),
and 2) EGO-Planner, which is a computationally efficient
gradient-based optimization method. Simulation experiments
were conducted using an open-source LiDAR-based UAV
simulator [24], as shown in Fig. 4. It is worth noting that both
methods Fast-Planner and EGO-Planner generate b-spline
trajectories parameterized by time t, and the output of those
planners are p,v,a evaluated at time t, while the output of
IPC is the angular velocity and thrust. In order to eliminate the
influence of the controller, the robot model in the simulation
environment was configured as an ideal model, where the robot
state (i.e., position, velocity, acceleration) are directly set to
the b-spline trajectories planned by Fast-Planner and EGO-
Planner, or the robot angular velocity and thrust are directly
set to the values as planned by IPC.

The quadrotor was given a target point located 10 meters
ahead. When it reached a triggering distance dt during forward
flight at a speed of vf , a object would suddenly appear
between the quadrotor and the target point. An experiment
was deemed successful if: 1) the quadrotor effectively avoided
the obstacle (i.e., the minimum distance dmin to the obstacle
greater than the radius r =0.25m of the quadrotor), and 2) the
quadrotor satisfied all dynamical constraints (e.g., maximum
velocity 10m/s and maximum acceleration 20m/s2). We set
up different combinations of dt and vf , with the triggering
distance set at intervals of 0.5m from 0.5m to 3.0m, and
the forward speed set at intervals of 0.5m/s from 0.5m/s to
10m/s. For each combination, the three methods were tested
10 times to calculate the success rate.

(a)

triggering

distance 𝑑𝑡

x

y

x

y

x

y

minimum

distance 𝑑𝑚𝑖𝑛

suddenly appearing object

wall

reference path

real trajectory

quadrotor

target

(b) (c)

forward

speed 𝒗𝒇

Fig. 4. Description of the simulation experiment. (a) The initial simulation
environment is where the suddenly appearing object with dimension of length:
0.2m, width: 0.2m, and height: 3m is located behind the wall, and the
quadrotor flies forward in a straight line. (b) The suddenly appearing object
appears on the quadrotor’s flight path at a triggering distance dt. (c) The
suddenly appearing object moves to the front of the quadrotor and stops,
while the quadrotor will avoid the suddenly appearing object after sensing it.

The simulation results are shown in Fig. 5. Along the simu-
lation results, we also show the boundary (the red line in Fig.
5) below which an ideal second-order integral model can fully
avoid the suddenly appearing object. In calculating the bound-
ary, the quadrotor is assumed to decelerate at the maximum
deceleration −20m/s2 in the x-direction and accelerates at
the maximum acceleration 20m/s2 in the y-direction to avoid
the obstacle, the boundary is where the minimum distance
between the quadrotor and the object is just zero. As can be
seen, as forward speed vf increases and triggering distance
dt decreases, the success rates of all methods decrease, which
is expected due to the reduced reaction time. Moreover, our
proposed method has a significantly higher success rate under
all forward speeds and triggering distances, reaching almost
the theoretical bound with a small gap, which is due to the
additional jerk constraints in MPC.

For Fast-Planner, the acceleration on the trajectory is prone
to violate the soft constraints (e.g., the maximum acceleration
of the trajectory is 28m/s2 at dt=3m and vf=7m/s, which
violates the maximum acceleration 20m/s2), rendering the
trajectory untrackable by a real quadrotor and leading to the
failure of obstacle avoidance. For EGO-Planner, it proposes
time reallocation to ensure dynamic feasibility, but its warm-
starting method (i.e., using the previous trajectory as the initial
value) results in a low success rate of trajectory optimization
when a suddenly appearing object appears, then the quadrotor
follows the previous trajectory and collides with the obstacle.
Compared to the computation time of each method in the
simulation environment (with a map contains 3030 points in
the point cloud and a resolution of 0.1m), the planning time
of IPC (∼ 2.1ms) falls between that of EGO-Planner (∼
0.9ms) and Fast-Planner (∼ 5ms), and Fast-Planner re-
quires the construction of an ESDF map in addition (∼ 6ms).
The high computation efficiency of EGO-Planner is achieved
by the warm start of the planning and local modification of
the trajectory, which, however, limits the success rate in case
of suddenly appearing objects.

B. Real-world Experiments

To evaluate the real-world performance of our IPC in real-
world environments, we developed a LiDAR-based quadrotor
platform weighing 1.5 kg with a thrust-to-weight ratio of

This article has been accepted for publication in IEEE Robotics and Automation Letters. This is the author's version which has not been fully edited and

content may change prior to final publication. Citation information: DOI 10.1109/LRA.2023.3311358

© 2023 IEEE. Personal use is permitted, but republication/redistribution requires IEEE permission.
See https://www.ieee.org/publications/rights/index.html for more information.

6 IEEE ROBOTICS AND AUTOMATION LETTERS. PREPRINT VERSION. ACCEPTED JULY, 2023

(a) (b) (c)

Fig. 5. The success times of the three methods in avoiding suddenly appearing object. The red line represents the theoretical boundary for successful avoidance
considering an ideal second-order integral model. When the suddenly appearing object moves, the forward speed vf represents the quadrotor’s speed at this
moment, and the triggering distance dt represents the distance between the quadrotor and the suddenly appearing object edge in the x-direction (as shown
in Fig. 4(b)). We conducted 10 experiments for each case and recorded the success times (i.e., the number of times the quadrotor successfully avoided the
suddenly appearing object). (a) Fast-Planner. (b) EGO-Planner. (c) Our IPC.

over 4.0. All perception and planning algorithms run in real-
time on an onboard Intel NUC with CPU i7-10710U. For
sensors, we employ the Livox Mid360 LiDAR and the built-
in IMU of Pixhawk. The FAST-LIO2 [25] algorithm serves as
the localization module, providing 100Hz high-quality state
estimation and 50Hz point cloud. Finally, the angular velocity
control of the quadrotor is achieved by Pixhawk autopilot.

TABLE II
PARAMETERS OF THE MPC

Parameter Value Description
△t 0.1 time step of the MPC
N 15 horizon length in the MPC

drad 0.3 quadrotor radius
g 9.81 gravitational acceleration

vi,max 8 maximum velocity in the x,y,z direction
ji,max 50 maximum jerk in the x,y,z direction
aj,max 2g maximum acceleration in the x,y direction
az,min −g minimum acceleration in the z direction
az,max 2g maximum acceleration in the z direction

For the MPC problem in the backend of our method,
the parameters are shown in Table II. Our weight matri-
ces are diagonal: Rp = diag(2000, 2000, 2000), Rv,N =
Ra,N = diag(200, 200, 200), Ru = diag(0, 0, 0) and Rc =
diag(0.2, 0.2, 0.2). Additionally, we adjust the preset reference
speed vr in Sec. III-C to control the nominal flight speed
of the quadrotor flight. Our IPC solved the MPC problem
at a frequency of 100Hz onboard and controlled the angular
velocity loop of the quadrotor at the same frequency through
the MAVLink protocol (i.e., 100Hz).

To obtain a more comprehensive understanding of our
experiments, we invite readers to watch our video2.

1) Indoor flight with suddenly appearing object: We con-
ducted experiments in an indoor environment with dimen-
sion of length: 2.5m, width: 8m, and height: 4m, that is
similar to our simulation environment (Sec. IV-A) to verify
the performance of our method in avoiding the suddenly
appearing object with dimension of length: 0.2m, width:
0.2m, and height: 1.0m, as shown in Fig. 1. We performed
ten experiments with forward speeds vf ranging from 0.5m/s
to 2.3m/s and triggering distances dt ranging from 0.5m
to 1.0m. In these experiments, our quadrotor successfully
evaded the suddenly appearing object. A successful agile flight
was performed with forward speed of 2.3m/s and triggering
distance of 1.0m, as shown in Fig. 1(a). In this flight, the

2https://www.youtube.com/@marslabhku1418

average total computation time of the IPC was 2.8ms, as
shown in Fig. 1(c). Although the computation time may exceed
2.8ms in a few cases due to a small solution space in narrow
areas, the total computation time remained below 10ms, which
did not affect our IPC’s ability to operate at 100Hz.

2) Indoor flight with dynamic objects: To demonstrate the
safety and low latency of our method, we conducted an indoor
experiment where two dynamic objects acted as obstacles
to interfere with the flight while the quadrotor performed a
five-point star flight on the x-y plane, as shown in Fig. 6.
One object moved automatically along a rectangular path at a
constant velocity of 0.5m/s, while the other moved randomly
via human operation with a maximum velocity of 0.8m/s. In
this experiment, our quadrotor was able to navigate among the
five waypoints safely without colliding with any of the manual
and automatic moving objects.

auto

quadrotor

reference

path

manual

Fig. 6. Top view of the five-star flight: The constant velocity of the automatic
object (blue) is 0.5m/s, and the max velocity of the manual object (yellow)
is 0.8m/s. The two objects have similar shape, with dimension of length:
0.2m, width: 0.2m, and height: 1.0m. The dimension of indoor environment
is length: 4.5m, width: 8.0m, and height: 4.0m.

3) Indoor flight with wind and external force disturbances:
Besides planning obstacle-free trajectory, our IPC, as an
integrated planning and control framework, is also able to
cope with external disturbances exerted on the UAV. In this
section, we subject the hovering quadrotor to a sudden and
violent external force using a stick to test our IPC’s disturbance
rejection ability. To prevent the quadrotor from unintentionally
avoiding the stick and causing the hover position to shift, we
disabled the collision avoidance module of the IPC in this
experiment. When subjected to rapid and severe external force
disturbances, the quadrotor was able to quickly respond and
return to the hovering position with a slight overshoot. An
example of a disturbance is shown in Fig. 7. We set the hover
position at (0, 0, 0.8) m. Due to the simplified linear model
used in the MPC, IPC has a small steady state hovering error

This article has been accepted for publication in IEEE Robotics and Automation Letters. This is the author's version which has not been fully edited and

content may change prior to final publication. Citation information: DOI 10.1109/LRA.2023.3311358

© 2023 IEEE. Personal use is permitted, but republication/redistribution requires IEEE permission.
See https://www.ieee.org/publications/rights/index.html for more information.

LIU et al.: INTEGRATED PLANNING AND CONTROL FOR QUADROTOR NAVIGATION 7

(i.e., 0.07m), as evidenced in Fig. 7(a). When the quadrotor
was pushed to 0.46m away from the target position by an
external force, it took 2.0 s to recover to the steady state, with
an overshoot of 0.05m.

stick

(b)(a)

Fig. 7. (a) Time evolution of the quadrotor’s position and position norm
error in the presence of stick disturbance: The grey area represents the period
during which the quadrotor is subject to external forces, while the solid black
line indicates the stable state. The black vertical dashed line represents the
quadrotor recovery to the hovering state. (b) Third-person view of the flight
with external force disturbance by stick.

Furthermore, we re-enabled the collision avoidance mod-
ule and tested the disturbance rejection ability of our IPC
against wind disturbances from two fans and external force
disturbances from a stick, as shown in Fig. 8. Despite being
disturbed by wind and external forces while flying in a narrow
space, the quadrotor could still navigate to its preset target
position safely without colliding with any obstacles.

stick

fan1

fan2

quadrotor

Fig. 8. Third-person view of indoor flight with wind and external force
disturbances: The wind speed of fan1 is about 6.6m/s, while fan2 is about
3.8m/s. The quadrotor can fly autonomously in narrow spaces with wind
disturbances (orange) and quickly adjust and safely reach the target position
even under external force disturbances from a stick (red).

4) Outdoor flight in the forest: To further verify the ro-
bustness and effectiveness of our method in the outdoor envi-
ronment, we conducted quadrotor’s autonomous navigation in
a dense forest with low bushes, as depicted in Fig. 9(a). We
performed over ten successful experiments with the maximum
velocity ranging from 1.0m/s to 6.0m/s in the presence
of wind speeds ranging from 0.5m/s to 3.2m/s. Fig. 9
shows a typical field flight. Our IPC achieved a maximum
velocity of 5.86m/s. During this experiment, the quadrotor
flew towards the target position along the reference path,
achieving autonomous navigation with an average speed of
4.51m/s along a trajectory of 58.64m.

C. Evaluation of MPC with Varying Horizon Length N and
Running Frequency f

To further demonstrate that the high frequency (100Hz) of
MPC has improved the quadrotor’s ability to avoid suddenly

6m/s0m/s(a) (b)

Fig. 9. (a) Third-person view of the flight in the forest. (b) Top view with two
partially enlarged views of this outdoor flight: The quadrotor flew through a
white rectangular area with dimensions 60m × 10m. The white-executed
trajectory covered a distance of approximately 58.64m with a maximum
velocity of 5.86m/s and an average velocity of 4.51m/s. The yellow stars
represent the start and end positions of the quadrotor.

appearing objects and attenuate external disturbances, we
conducted experiments in two scenarios with different values
of N and f in MPC: 1) Avoiding suddenly appearing object
in simulation (vf is 2.5m/s, dt is 1m). The simulation en-
vironment remains similar to Sec. IV-A except that a realistic
quadrotor dynamic model is also included in the simulation.
We performed five experiments and recorded the success rate
R and computation time tc for each setting. 2) Real-world
hovering experiment with a constant wind disturbance (speed
about 6.6m/s produced by a fan). We measured the hovering
error δp and its standard deviation σp.

TABLE III
COMPARISON OF VARYING HORIZON LENGTH N AND RUNNING

FREQUENCY f IN MPC

N f (Hz) R tc (ms) δp (m) σp (m)
5 100 20% 0.2315 0.0967 0.0084
10 100 100% 0.6351 0.0948 0.0099
15 10 0% 1.6841 crash crash
15 20 60% 1.5998 crash crash
15 50 80% 1.4724 0.1024 0.0083
15 100 100% 1.1488 0.0988 0.0105
25 100 100% 3.3654 0.0988 0.0117
50 <100 0% 18.7223 crash crash

The results are shown in Table III. As can be seen, at
a constant running frequency 100Hz, the success rate R
increases with the horizon N as long as the computation time
tc, which also increases with N , does not prevent the real-
time running. This is because when N is small (e.g., 5), the
quadrotor fails to avoid obstacles on time due to the shorter
prediction horizon of the MPC, while a longer horizon N
enables the quadrotor to avoid the dynamic objects further
ahead. However, when the horizon N is too large (e.g., 50),
the increased tc affects the real-time generation of control
commands (the MPC cannot be solved at 100Hz), leading to
collisions with obstacles. For the control accuracy, it remains
more or less similar as long as the MPC runs at the rated
frequency 100Hz.

In terms of running frequency f , it can be seen that
both the success rate R and hovering accuracy (evaluated
by the error δp) monotonically increases with f when N is
fixed at 15 , proving that the running frequency is a vital
factor for both dynamic obstacle avoidance and disturbance
attenuation. This is because, at lower frequencies (e.g., 10Hz,

This article has been accepted for publication in IEEE Robotics and Automation Letters. This is the author's version which has not been fully edited and

content may change prior to final publication. Citation information: DOI 10.1109/LRA.2023.3311358

© 2023 IEEE. Personal use is permitted, but republication/redistribution requires IEEE permission.
See https://www.ieee.org/publications/rights/index.html for more information.

8 IEEE ROBOTICS AND AUTOMATION LETTERS. PREPRINT VERSION. ACCEPTED JULY, 2023

20Hz), the quadrotor cannot respond promptly to dynamic
obstacles, nor against external disturbances, leading to crashes.
As the running frequency increases, the quadrotor can monitor
the environment and control errors at a shorter interval and
intervene in a more timely manner.

V. CONCLUSION AND FUTURE WORK

In this paper, we presented an integrated planning and
control (IPC) framework to enable the safe flight of a quadro-
tor in dynamic and unknown environments. To enable safe
flight in the environments with suddenly appearing objects
and disturbances, we propose two novel designs. Firstly, we
use an MPC-based optimization method with hard linear con-
straints to significantly reduce calculation time and improve
the quadrotor’s response to changes in the environment (e.g.,
suddenly appearing object). Secondly, we integrate planning
and control in the same framework by MPC, enhancing the
quadrotor’s response and disturbance rejection ability in the
environments with disturbances (e.g., wind gusts).

The IPC avoids dynamic objects in a reactive manner
without tracking and predicting the object movement. Such
reactive avoidance is fundamentally limited by the affordable
maneuverability of the quadrotor. Detecting, tracking and
predicting the dynamic objects movement could break such
limit and enable avoidance of higher-speed moving objects.
Furthermore, in the current MPC design, the terminal velocity
and acceleration are penalized to be close to zero, limiting
the quadrotor’s ability for high-speed flight (e.g., ≥10m/s).
Addressing these issues could be an interesting future work.

ACKNOWLEDGMENT

The authors gratefully acknowledge DJI for fund support
and Livox Technology for equipment support during the
project. The authors would like to thank Kuntian Dai, Jiafan
Xu, Zehuan Yu, and Sheng Xie for their support and the
robot team, Critical HIT, for supporting the experiment site.
This work was supported by Information Science Academy of
China Electronics Technology Group Corporation (ISA CETC)
under Project 200010756 and University Grants Committee of
Hong Kong General Research Fund (UGC GRF) under Project
17204523.

REFERENCES
[1] Boyu Zhou, Fei Gao, Luqi Wang, Chuhao Liu, and Shaojie Shen. Robust

and successful quadrotor trajectory generation for fast autonomous flight.
IEEE Robotics and Automation Letters, 4(4):3529–3536, 2019.

[2] Xin Zhou, Zhepei Wang, Hongkai Ye, Chao Xu, and Fei Gao. EGO-
Planner: An ESDF-free gradient-based local planner for quadrotors.
IEEE Robotics and Automation Letters, 6(2):478–485, 2021.

[3] Yunfan Ren, Fangcheng Zhu, Wenyi Liu, Zhepei Wang, Yi Lin, Fei Gao,
and Fu Zhang. Bubble planner: Planning high-speed smooth quadrotor
trajectories using receding corridors. In 2022 IEEE/RSJ International
Conference on Intelligent Robots and Systems (IROS), pages 6332–6339.
IEEE, 2022.

[4] Sertac Karaman, Matthew R Walter, Alejandro Perez, Emilio Frazzoli,
and Seth Teller. Anytime motion planning using the rrt. In 2011 IEEE
international conference on robotics and automation, pages 1478–1483.
IEEE, 2011.

[5] Yunfan Ren, Siqi Liang, Fangcheng Zhu, Guozheng Lu, and Fu Zhang.
Online whole-body motion planning for quadrotor using multi-resolution
search. In 2023 IEEE International Conference on Robotics and
Automation (ICRA), pages 1594–1600. IEEE, 2023.

[6] Sikang Liu, Michael Watterson, Kartik Mohta, Ke Sun, Subhrajit Bhat-
tacharya, Camillo J Taylor, and Vijay Kumar. Planning dynamically
feasible trajectories for quadrotors using safe flight corridors in 3-
d complex environments. IEEE Robotics and Automation Letters,
2(3):1688–1695, 2017.

[7] Yuwei Wu, Ziming Ding, Chao Xu, and Fei Gao. External forces
resilient safe motion planning for quadrotor. IEEE Robotics and
Automation Letters, 6(4):8506–8513, 2021.

[8] Jing Chen, Kunyue Su, and Shaojie Shen. Real-time safe trajectory
generation for quadrotor flight in cluttered environments. In 2015 IEEE
International Conference on Robotics and Biomimetics (ROBIO), pages
1678–1685. IEEE, 2015.

[9] Fei Gao, William Wu, Wenliang Gao, and Shaojie Shen. Flying on
point clouds: Online trajectory generation and autonomous navigation
for quadrotors in cluttered environments. Journal of Field Robotics,
36(4):710–733, 2019.

[10] Youngsang Suh, Jiseock Kang, and Dongjun Lee. A fast and safe
motion planning algorithm in cluttered environment using maximally
occupying convex space. In 2020 20th International Conference on
Control, Automation and Systems (ICCAS), pages 173–178. IEEE, 2020.

[11] Weidong Sun, Gao Tang, and Kris Hauser. Fast uav trajectory op-
timization using bilevel optimization with analytical gradients. IEEE
Transactions on Robotics, 37(6):2010–2024, 2021.

[12] Ban Wang, Youmin Zhang, and Wei Zhang. Integrated path planning and
trajectory tracking control for quadrotor uavs with obstacle avoidance
in the presence of environmental and systematic uncertainties: Theory
and experiment. Aerospace Science and Technology, 120:107277, 2022.

[13] Tim Salzmann, Elia Kaufmann, Jon Arrizabalaga, Marco Pavone, Davide
Scaramuzza, and Markus Ryll. Real-time neural mpc: Deep learning
model predictive control for quadrotors and agile robotic platforms.
IEEE Robotics and Automation Letters, 8(4):2397–2404, 2023.

[14] Davide Falanga, Philipp Foehn, Peng Lu, and Davide Scaramuzza.
Pampc: Perception-aware model predictive control for quadrotors. In
2018 IEEE/RSJ International Conference on Intelligent Robots and
Systems (IROS), pages 1–8. IEEE, 2018.

[15] Bruno Brito, Boaz Floor, Laura Ferranti, and Javier Alonso-Mora. Model
predictive contouring control for collision avoidance in unstructured dy-
namic environments. IEEE Robotics and Automation Letters, 4(4):4459–
4466, 2019.

[16] Zhuozhu Jian, Zihong Yan, Xuanang Lei, Zihong Lu, Bin Lan, Xueqian
Wang, and Bin Liang. Dynamic control barrier function-based model
predictive control to safety-critical obstacle-avoidance of mobile robot.
In 2023 IEEE International Conference on Robotics and Automation
(ICRA), pages 3679–3685. IEEE, 2023.

[17] Michael Neunert, Cédric De Crousaz, Fadri Furrer, Mina Kamel, Farbod
Farshidian, Roland Siegwart, and Jonas Buchli. Fast nonlinear model
predictive control for unified trajectory optimization and tracking. In
2016 IEEE international conference on robotics and automation (ICRA),
pages 1398–1404. IEEE, 2016.

[18] Elias Small, Pantelis Sopasakis, Emil Fresk, Panagiotis Patrinos, and
George Nikolakopoulos. Aerial navigation in obstructed environments
with embedded nonlinear model predictive control. In 2019 18th
European Control Conference (ECC), pages 3556–3563. IEEE, 2019.

[19] Björn Lindqvist, Sina Sharif Mansouri, Ali-akbar Agha-mohammadi,
and George Nikolakopoulos. Nonlinear mpc for collision avoidance and
control of uavs with dynamic obstacles. IEEE robotics and automation
letters, 5(4):6001–6008, 2020.

[20] Charbel Toumieh and Alain Lambert. Decentralized multi-agent plan-
ning using model predictive control and time-aware safe corridors. IEEE
Robotics and Automation Letters, 7(4):11110–11117, 2022.

[21] Yunfan Ren, Yixi Cai, Fangcheng Zhu, Siqi Liang, and Fu Zhang.
Rog-map: An efficient robocentric occupancy grid map for large-
scene and high-resolution lidar-based motion planning. arXiv preprint
arXiv:2302.14819, 2023.

[22] Peter Hart, Nils Nilsson, and Bertram Raphael. A formal basis for the
heuristic determination of minimum cost paths. IEEE Transactions on
Systems Science and Cybernetics, 4(2):100–107, 1968.

[23] Daniel Mellinger and Vijay Kumar. Minimum snap trajectory generation
and control for quadrotors. In 2011 IEEE international conference on
robotics and automation, pages 2520–2525. IEEE, 2011.

[24] Fanze Kong, Xiyuan Liu, Benxu Tang, Jiarong Lin, Yunfan Ren, Yixi
Cai, Fangcheng Zhu, Nan Chen, and Fu Zhang. Marsim: A light-
weight point-realistic simulator for lidar-based uavs. IEEE Robotics
and Automation Letters, 8(5):2954–2961, 2023.

[25] Wei Xu, Yixi Cai, Dongjiao He, Jiarong Lin, and Fu Zhang. Fast-lio2:
Fast direct lidar-inertial odometry. IEEE Transactions on Robotics, 2022.

This article has been accepted for publication in IEEE Robotics and Automation Letters. This is the author's version which has not been fully edited and

content may change prior to final publication. Citation information: DOI 10.1109/LRA.2023.3311358

© 2023 IEEE. Personal use is permitted, but republication/redistribution requires IEEE permission.
See https://www.ieee.org/publications/rights/index.html for more information.

