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Abstract— Aerial tracking with multiple unmanned aerial
vehicles (UAVs) has wide potential in various applications.
However, the existing works for swarm tracking typically
lack the capability of maintaining high target visibility in
cluttered environments. To address this deficiency, we present
a decentralized planner that maximizes target visibility while
ensuring collision-free maneuvers for swarm tracking. In this
paper, each drone’s tracking performance is first analyzed by a
decentralized kinodynamic searching front-end, which renders
an optimal guiding path to initialize safe flight corridors and
visible sectors. Afterwards, a polynomial trajectory satisfying
the corridor constraints is generated by a spatial-temporal
optimizer. Inter-vehicle collision and occlusion avoidance are
also incorporated into the optimization objectives. The ad-
vantages of our methods are verified by extensive benchmark
comparisons against other cutting-edge works. Integrated with
an autonomous LiDAR-based swarm system, the proposed
planner demonstrates its efficiency and robustness in real-world
experiments with unknown cluttered surroundings.

I. INTRODUCTION

Boosted by the advancement of onboard sensing and com-
puting technologies, autonomous aerial tracking with UAVs
has been widely applied in cinematography, surveillance, and
industrial inspection. In recent literature, target tracking us-
ing multiple UAVs has drawn increasing attention. Compared
to a single UAV, swarm tracking possesses larger system
redundancy and team cooperation capability. However, there
still exist three main technical challenges in swarm tracking:

1) Safety: The trajectory of each tracker must be colli-
sion free w.r.t. surrounding obstacles, target, and other
teammate trackers in the swarm. Each trajectory should
also respect the dynamic constraints of the robot.

2) Visibility: The target should be visible during the
flight. Each tracker needs to prevent the target from be-
ing occluded by obstacles and other teammate robots.

3) Portability: The trajectory planner should be decen-
tralized and computationally efficient, which is crucial
for the application in real-world tracking tasks.

In practice, the movements of the tracker are constrained by
collision avoidance and dynamic feasibility, which may cause
the target visibility to be compromised. And the portability
imposes more strict limitations on the planner implementa-
tion. Thus, how to systematically trade off the safety and
visibility in a portable manner is the key to achieving high-
visibility swarm tracking in cluttered scenes. Despite the
recent progress in multiple-UAV tracking, the method that
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Fig. 1: (a) A swarm of three drones is tracking a manually operated target
drone in the middle. (b) Visualization of the point cloud map and planned
trajectories. The points measured on the target are marked in a dashed box.
More details can be found in the video at https://youtu.be/04-ls0PHkuU.

can concurrently address the three challenges is still lacking
in existing works. Several studies [1, 2] chase a target as
a leader by leveraging constant leader-follower formations.
Their frameworks can retain safe displacements between
tracker and target but neglect the visibility requirements.
Instead of prescribing formations, a group of works [3, 4] co-
ordinate the swarm by searching visibility-aware paths using
a centralized front-end. However, their centralized schemes
make the system vulnerable to single-point-of-failure. In
many aerial tracking studies [5]–[8], both collision and
occlusion avoidance rely on constructing Signed Distance
Fields (SDFs), which could cause an extra computational
burden. Therefore, an efficient swarm tracking planner that
tackles all three challenges is rare in the literature.

To bridge this gap, we introduce a hierarchical swarm
trajectory generation framework that handles all the afore-
mentioned challenges systematically. In this work, we use
a 360◦ LiDAR sensor as the onboard sensor. Compared
to traditional cameras [1, 8, 9], one 360◦ LiDAR is able
to perform target sensing and environmental perception si-
multaneously, which endows the swarm with more possible
tracking strategies. In our planning pipeline, a decentralized
kinodynamic search is first carried out as the front-end to
generate guiding paths for each agent. Front-end costs that
quantify the tracking quality are formulated to select the best
motion primitives for the task objectives. Subsequently, a
safe flight corridor is constructed along the searched path.
For the back-end, we present a spatial-temporal optimiza-
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tion module that optimizes the trajectories over collision
penalty, tracking distance, and visibility costs jointly. The
advantage of our method is verified by extensive benchmark
comparisons and ablation studies. Afterwards, we integrate
our framework into a real decentralized LiDAR-based swarm
system, where drone trajectories are broadcast to others via
wireless communication. Finally, we validate the practicality
and efficiency of our tracking planner in a real-world forest.

The contributions of this paper are summarized as:
1) We propose a decentralized kinodynamic front-end to

initiate guiding paths that maximize the tracking qual-
ity (e.g., target visibility) for back-end optimizations.

2) We propose a decentralized spatial-temporal trajectory
optimizer for swarm tracking, which considers tracker
safety and target visibility concurrently.

3) We present a decentralized swarm tracking system
that demonstrates the efficiency and robustness of our
method in real-world aerial tracking tasks.

II. RELATED WORKS

A. Single-UAV Target Tracking

Optimization-based trajectory generation for single-drone
aerial tracking is extensively investigated in the literature.
Penin et al. [10] directly evaluate the target visibility in
the camera image space and incorporate the constraints into
a nonlinear programming problem. However, they assume
that all the obstacles are ellipsoid-shaped, which is not
applicable to unstructured scenes. Han et al. [11] proposed
a tracking planner containing a spatial-temporal back-end
optimizer and kinodynamic front-end searcher. But they only
include tracking distance as the objective and neglect target
visibility. Bonatti et al. [5] present an aerial cinematography
planning framework that jointly takes obstacle avoidance,
target occlusion, and motion smoothness into account. Nev-
ertheless, their optimization relies on the gradients from a
SDF, which is time-consuming to construct for large scenes.
In [8], Wang et al. design a visibility cost that penalizes
the intersection area of obstacles and the field of view
(FOV). However, the proposed constraint is too hard to be
satisfied in dense environments. Besides, it is not compatible
with omnidirectional sensors like 360◦ LiDAR, since the
intersection area could always exist in the FOV. In [12], Ji et
al. design a more generic method to enforce target visibility.
They generate a sequence of sector-shaped visible regions
for the target by raycasting and then constrain the tracker’s
trajectory in those sectors via spatial-temporal optimization.
In this work, we adopt the visibility formulation in [12] and
extend it to the settings of multiple-UAV tracking.

B. Multiple-UAV Target Tracking

Multiple-UAV target tracking has drawn increasing at-
tention in the recent literature [1]–[4, 13]. Zhou et al.
[1] demonstrate a swarm of drones following a target in
accordance with a constant leader-follower formation. In
their work, the target position observed by one tracker is
broadcast to others so as to improve the overall occlusion
resistance. For the tracking task in [2], Tallamraju et al.

exploit the formation configuration to minimize the fused
uncertainty of target estimation, and utilize model predictive
controllers (MPC) to handle both formation maintenance
and obstacle avoidance. Although the drones in [1, 2] can
communicate the target observations to temporarily survive
the occlusion, their planners lack the motion strategy to
actively reduce the risk of visibility loss. To address this
issue, Nageli et al. [13] proposed an MPC-based scheme
that calculates a horizon plane according to the obstacle to
split the visible and invisible areas. However, their strategy
still relies on modeling the obstacles as ellipsoids. Bucker et
al. [3] discretize the space around the target into cells and
rate each cell based on occlusion avoidance performance.
Then centralized greedy searching is conducted to generate
motion sequences with the lowest visibility loss for each
drone. However, their greedy searching has a predefined
priority, which could lead to sub-optimality of the result.
Ho et al. [4] introduce a framework that produces swarm
trajectories for aerial 3D reconstruction. In their work, the
follower formation is allowed to rotate around the target, and
a centralized front-end planner searches the optimal sequence
of rotation angles via dynamic programming. Nevertheless,
the strict assumption of fixed formation can be easily violated
in cluttered scenes. And the centralized system is vulnerable
w.r.t. the failure of central nodes. In contrast to [4], our work
is fully decentralized and encodes the formation as a soft cost
for trade-off, but still possesses collaborative maneuverability
while preserving high target visibility.

III. KINODYNAMIC SEARCHING

Our kinodynamic front-end searches for a safe and feasible
reference path by expanding motion primitives with a dis-
cretized control input space, which is similar to other hybrid
A* schemes for quadrotor navigation [9, 11, 14]. Rather than
deriving a path to the terminal state with minimal control
effort, our searching method evaluates each primitive based
on its tracking performance, so as to achieve high consistency
of the front-end and the overall task objectives.

A. Node Expansion
The state vector x ∈ R6 of a tracker drone is comprised

of drone position p = [px, py, pz]
T and velocity v =

[vx, vy, vz]
T . For each dimension, we use acceleration as

the control input and discretize the input space as ud =
{−amax, 0, amax}, where amax indicates the acceleration
limit. Before the searching process, a prediction module
renders a series of future target positions according to a time
step δT and a prediction horizon Tp. The target sequence is

Qtarget = {qk ∈ R3 | 0 ≤ k ≤ Np, tk = k · δT}, (1)

where Np is the total prediction number and tk is the
timestamp corresponding to the target position at the kth step
from now. In the front-end, we expand motion primitives
of the tracker drone directly using the prediction interval
δT , so that the timestamp tk of every new node xn of the
tracker drone is aligned with the target prediction qk. With
the above control inputs and time steps, the motion primitives
are expanded using double-integrator dynamics.
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Fig. 2: An illustration of primitive rejection. a and b are rejected by inter-
vehicle safety check, d is rejected by obstacles, e fails the topology check.

B. Primitive Rejection

To facilitate the task requirements and accelerate the
searching, we design pruning strategies to reject the in-
feasible nodes in the primitive expansion process timely.
After each expansion step, all resultant nodes are checked
in terms of obstacle avoidance, dynamic feasibility, inter-
vehicle safety, and topological consistency. For inter-vehicle
collision avoidance, we first query the current positions of
teammate drones on the broadcast trajectories. Then a node
is considered safe if the distances between the node and all
its teammates are larger than a clearance rs.

During swarm flights, each drone is expected to main-
tain a coherent trajectory homotopy, since rapid changes in
topological structures could raise the risk of inter-vehicle
collision, especially in the presence of communication la-
tency. Thus, for a proximal time horizon Ts, the topological
consistency is checked between the current node and the
corresponding node on the trajectory planned in the last
replan cycle, to prevent abrupt changes. Let p′k denote the
position at time tk < Ts on the last trajectory, then the node
pk being expanded is considered inconsistent if line pk p′k is
not collision-free. Fig. 2 shows the rejection mechanism for
the primitives expanded from tk−1 to tk, where tk < Ts.

C. Cost Functions

After the pruning process, every remaining node xn is
assigned a cost gn as a coarse assessment of its tracking
quality. We formulate the front-end costs as follows.

1) Obstacle Occlusion: This cost is introduced to pre-
serve target visibility against static obstacle occlusions.
Given a target position qk seen from a tracker positioned at
pk, the target is considered visible if the line of sight(LOS)
qk pk hits no obstacles (i.e., collision-free). This definition
matches with the principle of LiDAR measurement.

In practice, to avoid binary cost, we penalize the occlusion
using a measure of voxel occupancy along the line of sight.
Letting Ls denote LOS segment qk pk, we have Ls(τ) =
τ qk + (1− τ) pk, 0 ≤ τ ≤ 1. Then the cost is given by

gvis =

∫ 1

0

Vocc(Ls(τ)) dτ, (2)

where Vocc returns the voxel occupancy at position Ls(τ).

2) Tracking Distance: Inspired by [12], the vertical dis-
tance dz (along z-axis) and the horizontal distance dh (in
x-y plane) between target qk and tracker pk are regulated
separately using different costs. For vertical distance, a
quadratic cost is given as gvrt = d2z . The purpose is to align
the height of the tracker with the target, so that the target
can be contained in the vertical FOV of LiDAR at all time.
We expect the horizontal distance to satisfy dlb ≤ dh ≤ dub,
where dub and dlb are the upper and lower bounds of desired
tracking distance. Then the horizontal cost is defined as

ghoz =

 5 (dlb − dh)
3, dh < dlb,

0, dlb ≤ dh ≤ dub,
(dh − dub)

2 / 2, dh > dub.
(3)

We put slighter penalty on larger tracking distances, since
the LiDAR sensing range is much longer than dub. But the
lower bound dlb is strictly enforced to secure target safety.

3) Angular Separation: Two requirements on swarm
angular separation are proposed. Firstly, a requisite for
teammate occlusion avoidance is enforced. It demands the
trackers to keep an angular distance between each other about
the target position, and the distance should be no less than
a clearance θc, so that the line of sight between tracker and
target will not be blocked by teammates. Secondly, apart
from the minimal clearance θc, we also expect the swarm to
maintain an optimal formation with an evenly spaced angular
separation 2π/N , where N is the swarm size. With this
equidistant formation, the swarm can make full use of the
vicinity around the target, which provides the trackers with
the largest angular space to respond to any adverse situations,
such as occlusion. Fig. 3(a) shows the twofold requirements.

Let pj,k denote the position of the jth drone at time tk.
With the same timestamp, the ith drone locates at pi,k and
the target is at qk. Then for the mutual occlusion cost, we
penalize the angles less than clearance θc directly by

gmoc =

N∑
j=1, j ̸= i

max{0, θc − acos(
ei,k · ej,k

∥ei,k∥ ∥ej,k∥
)}, (4)

where ei,k = pi,k − qk, ej,k = pj,k − qk. This occlusion cost
serves as the basic requirement for angular distancing. Cost
gfrm for the optimal formation has the same expression as
cost gmoc, but the clearance term θc is replaced by 2π/N .

Synthesizing all the terms, we have node cost gn as

gn = [gvis, gvrt, ghoz, gmoc, gfrm] · w, (5)

where w is the weight vector to trade off cost priorities.
The searching terminates when one primitive reaches the
target prediction horizon Tp. In implementation, we employ
the remaining expansion time hn = Tp − tk as a heuristic
function to speed up the searching process.

D. Flight Corridors and Visible Sectors
We adopt the efficient method in [15] for safe flight

corridor generation along the searched path. The corridor
is composed of connected polyhedra, each is denoted as

P = {x ∈ R3 | Ac x ≤ bc}. (6)
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Fig. 3: (a) An illustration of the minimal angular clearance θc between
drones and the expected formation separation 2π/N , qk denotes the target
position. (b) The visible sector constructed in III-D.

For each pair of target position qk and path waypoint pk,
a visible region as depicted in Fig. 3(b) is constructed
following [12]. Each visible sector can be written as

V = {x ∈ R3 | ⟨x− qk, ξk⟩ ≤ θk}, (7)

where ⟨ , ⟩ denotes the angle between two vectors.

IV. SPATIAL-TEMPORAL TRAJECTORY OPTIMIZATION

A. Trajectory Representation

In this work, we use the MINCO representation [16], a
minimum control effort polynomial trajectory class to con-
duct spatial-temporal deformation of the flat-output trajectory

ΞMINCO ={p(t) : [0, TΣ] 7→ Rm| c = C(q,T),
q ∈ Rm(M−1),T ∈ RM

>0},
(8)

where c = (cT1 , · · · , cTM )T is the polynomial coefficient, q =
(q1, · · · , qM−1) the intermediate points, T = (T1, · · · , TM )T

the time vector, C(q,T) is the linear-complexity parameter
mapping from [16], and TΣ is the total trajectory duration. A
m-dimensional M -piece trajectory p(t) is defined as p(t) =
pi(t − ti−1), ∀t ∈ [ti−1, ti), and the ith piece trajectory
is represented by a N = 5 degree polynomial pi(t) =
cTi β(t), ∀t ∈ [0, Ti]. MINCO trajectories are all compactly
parameterized by q and T. With mapping C(q,T), the cost of
the polynomial trajectories in ΞMINCO can be evaluated by
q and T by J (q,T) = F(c,T) = F(C(q,T),T). Thus, we
can conduct trajectory optimization over objective J using
the gradients ∂J /∂q and ∂J /∂T, which are propagated
from gradients ∂F/∂c and ∂F/∂T accordingly.

We formulate the trajectory generation as an unconstrained
optimization problem. The optimization objective is given by

min
q, T

J = λcJc +
∑
∗
λ∗J∗ +

∑
⋆

λ⋆J⋆ +
∑
⋄
λ⋄J⋄, (9)

where Jc is the cost for minimizing control effort and time
duration of the trajectory:

Jc =

∫ TΣ

0

∥ p(3)i (t) ∥2 dt+ ρ TΣ. (10)

Aside from control effort and time cost, objective J also
contains the terms that penalize the violations of inequality
constraints ψ(p(t), ..., p(3)(t)) ≤ 0. The constraints can be

divided into three categories. In the first category, constraints
ψ∗ act for the basic necessities for single-UAV navigation,
and the corresponding violation penalties J∗ are integrated
using relative time on the trajectory pieces. For the second
category, constraints ψ⋆ and penalties J⋆ are concerned
with single-UAV target tracking requirements, which are
evaluated at the absolute timestamps of target predictions.
The third category is associated with swarm coordination,
where the constraints and penalties are marked as ψ⋄ and
J⋄. Coefficients λ represent the weights for cost trade-offs.

B. Single-UAV Navigation Constraints

The constraints ψ∗ for navigation are evaluated on rela-
tive times. To efficiently compute violations, we transform
the continuous constraints into finite ones using constraint
transcription. Penalties J∗ are numerically integrated by
sampling the trajectories evenly with time step Ti/κi, where
κi denotes the sample number of the ith piece. So we have

J∗ =

M∑
i

Ti
κi

κi∑
j=0

ω̄j max{ψ∗(pi(t)), 0}3, (11)

where t = (j/κi)Ti refers to the relative time sampled on the
ith piece. Integral coefficients (ω̄0, ω̄1, · · · , ω̄κi−1, ω̄κi

) =
(1/2, 1, · · · , 1, 1/2) follow the trapezoidal rule. The gradi-
ents of J∗ w.r.t. ci and Ti can be derived by chain rule

∂J∗

∂ci
=
∂J∗

∂ψ∗

∂ψ∗

∂pi

∂pi
∂ci

, (12)

∂J∗

∂Ti
=

J∗

Ti
+
∂J∗

∂ψ∗

∂ψ∗

∂pi

∂pi
∂t

∂t

∂Ti
, (13)

∂pi
∂ci

= β(t),
∂pi
∂t

= ṗi(t),
∂t

∂Ti
= j/κi, (14)

and ∂ψ∗/∂pi is determined by the formulations of ψ∗. The
constraints ψ∗ are detailed as follows.

1) Obstacle Avoidance: The trajectory of each tracker
should be confined in the polyhedral safe corridors generated
in Sec.III-D. The corridor constraint ψo is written as

ψo = Ac pi(t)− bc. (15)

2) Dynamic Feasibility: We limit the maximum ampli-
tudes of the tracker’s velocity and acceleration. The dynamic
constraints ψvel and ψacc are given by

ψvel = ṗi(t)
2 − v2max, ψacc = p̈i(t)

2 − a2max, (16)

where vmax and amax are the upper bounds.

C. Single-UAV Target Tracking Constraints

To impose the single-UAV tracking constraints ψ⋆, viola-
tion penalties J⋆ should be evaluated at absolute time tk,
which is the kth timestamp of target predictions. We have

J⋆ =

Np∑
k=1

δT max{ψ⋆(p(tk)), 0}3, (17)

where δT and Np are the time interval and total number of
predictions. Assume that tk is located on the ith piece of the
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trajectory, then the corresponding relative time t of tk on the
ith piece becomes t = tk −

∑i−1
l=1 Tl, where Tl denotes the

preceding piece duration. Note that the formulation of t here
brings in the gradient dependence on all Tl with 1 ≤ l ≤ i.
Thus, the gradients of J⋆ are derived as

∂J⋆

∂ci
=
∂J⋆

∂p

∂p

∂ci
,
∂J⋆

∂Tl
=
∂J⋆

∂p

∂p

∂t

∂t

∂Tl
, (18)

∂p

∂ci
= β(tk −

i−1∑
l=1

Tl),
∂t

∂Tl
=

{
0, l = i,
−1, l < i.

(19)

The single-UAV tracking constraints ψ⋆ are listed as follows.
1) Tracking Distance: The constraint ψdis for distance

keeping is in the same form as the front-end in Sec.III-C:

ψdis = ghoz + gvrt. (20)

2) Obstacle Occlusion: To confine the trajectory in the
visible sectors generated from Sec.III-D following [12], we
use the occlusion avoidance constraint ψocc:

ψocc = cos θk − (p(tk)− qk) · ξk
∥p(tk)− qk∥

. (21)

D. Swarm Coordination Constraints

With the communication network, each drone receives
teammates’ trajectories to formulate swarm constraints ψ⋄
and optimizes its own trajectory accordingly. In this category,
the penalties J⋄ consist of Jrep for inter-vehicle collision
avoidance and Jmoc for swarm angular distancing.

1) Swarm Reciprocal Clearance: Since this continuous
constraint involves the teammate trajectories, we need to use
a relative time t = (j/κi)Ti for the ego trajectory and the
corresponding absolute timestamp τ to query the teammate
positions on received trajectories, where τ =

∑i−1
l=1 Tl +

(j/κi)Ti. To enforce swarm safety, we expect each drone
to maintain the distance clearance rs to all other teammates
at all time. For a swarm of N drones, let pϕ(τ) denote the
trajectory from the teammate drone ϕ and ψrϕ denote the
clearance constraint associated with teammate ϕ, then the
violation penalty Jrep is formulated as

Jrep =

M∑
i

Ti
κi

κi∑
j=0

ω̄j

N∑
ϕ

max{ψrϕ(pi(t), pϕ(τ)), 0}3, (22)

ψrϕ(pi(t), pϕ(τ)) = r2s − ∥pi(t)− pϕ(τ)∥2. (23)

Note that term τ introduces ψrϕ the gradient dependence on
its preceding pieces Tl through pϕ(τ). So temporal gradient

∂ψrϕ

∂Tl
=
∂ψrϕ

∂pi

∂pi
∂t

∂t

∂Tl
+
∂ψrϕ

∂pϕ

∂pϕ
∂τ

∂τ

∂Tl
, (24)

∂t

∂Tl
=

{ j
κi
, l = i,

0, l < i,

∂τ

∂Tl
=

{ j
κi
, l = i,

1, l < i.
(25)

Other components of gradients ∂Jrep/∂ci and ∂Jrep/∂Tl
are in the same form as in Eq. 12 and Eq. 13.

Angle(rad)

Fig. 4: The profile of ψsϕ w.r.t. the angular distance.

2) Swarm Angular Separation: To handle the twofold
angular distancing requirements described in Sec.III-C, a C2-
continuous cost is formulated for the back-end. Since target
positions are entailed in the constraints, the angular separa-
tion penalty Jsep needs to be evaluated at absolute prediction
timestamps tk. Let ψsϕ denote the angular distancing cost
exerted by teammate drone ϕ, then we have

Jsep =

Np∑
k=1

δT

N∑
ϕ

max{ψsϕ(p(tk), pϕ(tk)), 0}3. (26)

Let ηϕ denote the cosine value of the angular distance from
teammate ϕ, we have

ηϕ =
(p(tk)− qk) · (pϕ(tk)− qk)

∥p(tk)− qk∥∥pϕ(tk)− qk∥
. (27)

If the mutual occlusion clearance θc is not violated, the
constraint ψsϕ is only induced by the desired formation:

ψsϕ = (ηϕ − cos
2π

N
)2. (28)

When the angular distance is less than θc, i.e., ηϕ > cos θc,
then ψsϕ is augmented by a mutual occlusion penalty to
repulse the tracker away from teammate ϕ:

ψsϕ = (ηϕ − cos
2π

N
)2 + ρs (ηϕ − cos θc)

3, (29)

where ρs is a tunable weight. Unlike the reciprocal collision
penalty Jrep, the teammate position pϕ(tk) in this Jsep

produces no extra gradients. It is because both teammate
and ego trajectories in Jsep are queried using the same fixed
absolute time tk, thus the teammate position pϕ(tk) is a
constant throughout the optimization iterations. Therefore,
all the gradients of Jsep have identical forms as Eq. 18.

V. BENCHMARK AND ABLATION STUDY

A. Benchmark Comparisons

To validate the advantage of our method, benchmark
comparisons are conducted with other cutting-edge swarm
tracking planners. The proposed method is compared with
Zhou’s work [1] and Ho’s work [4]. To benchmark the

Fig. 5: The random maps for benchmark comparison.
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Fig. 6: The benchmark results in simulation. Top: The orange trajectory is executed by target. Two areas ① and ② are extracted for illustration. Middle:
Snapshots of the trackers and target in area ①. Subfigures (a) to (c) shows the swarm behaviour of our method. Benchmark results are shown in (d) and
(e). The green arrows indicate the occlusion-free LOS between trackers and target, whereas the red ones refer to occlusion. Bottom: Snapshots in area ②.

performance fairly, we simulate three swarms chasing one
same target drone simultaneously. Each swarm contains four
trackers and runs one compared planner in a cluttered area
of 40m×40m size. Each method is tested with three random
maps generated with different obstacle types and densities as
shown in Fig. 5. The optimization problems are solved by
LBFGS-Lite1. The maximum velocity of the target drone is
set to 1.5m/s. The tracker has a vertical FOV of 60◦ and
a maximum velocity of 3m/s. The lower and upper bounds
of tracking distance are set to 1.7m and 2.3m.

The tracking performance is evaluated over four metrics:
average target visibility (ϑavg), visibility of the worst case
(ϑwst), time ratio of full visibility (γvis), and tracking
distance (davg). A tracker is considered losing the target if
the line of sight is blocked by an obstacle, or blocked by a
teammate drone, or out of vertical FOV. The swarm visibility
ϑ(t) is defined as the count of trackers that are not losing
the target at time t. For a tracking task with duration Tb, the
average visibility ϑavg is calculated by

ϑavg =
1

Tb

∫ Tb

0

ϑ(t)dt. (30)

Practically, this metric ϑavg is numerically integrated by
sampling the tracking task with a time interval of 0.2s. The
metric ϑwst indicates the worst swarm visibility sampled in
the whole task. Let Tvis denote the total time duration in
which the target is visible to all trackers in the swarm, then
metric γvis refers to the ratio of Tvis to Tb. The tracking
distance davg is averaged in the same manner as ϑavg .

The results are summarized in Tab.I. As seen from the
table, the proposed method outperforms other works in terms
of ϑavg , ϑwst and γvis on all three maps with satisfactory

1https://github.com/ZJU-FAST-Lab/LBFGS-Lite

TABLE I: Benchmark Results

Scenario Method
Metric

ϑavg ϑwst γvis(%) davg(m)

Blocks
Zhou [1] 3.89 3 89.7 1.98
Ho [4] 3.97 3 97.6 2.04
Ours 4.00 4 100.0 1.94

Walls
Zhou [1] 3.70 2 72.1 2.06
Ho [4] 3.79 3 79.4 2.03
Ours 3.97 3 96.9 1.92

Forest
Zhou [1] 3.64 2 66.9 2.05
Ho [4] 3.70 2 72.1 2.02
Ours 3.96 3 96.0 1.91

distances davg . Zhou’s planner [1] involves no active oc-
clusion avoidance, so their method has the lowest visibility.
Ho et al. [4] assign a rotatable formation template to the
swarm and search for the best rotation to reduce occlusion.
However, their assumption of fixed formation is still overly
strict for dense maps. For the scenario in Fig. 6, our planner
agilely rotates and deforms the swarm to keep the target fully
visible, whereas occlusion occurs to other two methods.

B. Ablation Study

Ablation studies are carried out to further verify the
necessity of the proposed kinodynamic front-end and the
strength of our angular formation costs. For the front-end
ablation, we first replace our kinodynamic searching with a
vanilla A* front-end presented in [12]. This ablated planner
is marked as Variant 1. Secondly, in both front-end and
back-end, we remove all cost terms that enforce the uniform
angular separation 2π/N . This ablated planner that cancels
the formation constraints is marked as Variant 2. Finally,
the full planner as the Proposed and Zhou’s work [1] as the
Baseline are also simulated for comparison.

All variants are tested in the forest maps generated with
six levels of densities, varying from 1/40 tree/m2(sparse)
to 1/12 tree/m2(very dense). Each tree is a cylinder with
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Fig. 7: The ablation results of metrics γvis and ϑavg .

a diameter of 0.9m and a height of 4m. In each trial, four
trackers collaborate to chase a target drone that traverses
the forests with a maximum velocity of 1.5m/s. The results
are shown in Fig. 7. The vanilla A* searching in Variant
1 greedily minimizes the path distance but neglects the re-
quirements from swarm coordination, which leads to frequent
mutual occlusion and hence low swarm visibility even in
sparse scenes. Variant 2 uses the proposed front-end to
deconflict the inter-vehicle interference among the swarm
and significantly boosts the tracking performance. However,
since it cancels the formation, all trackers tend to gather
behind the target when traversing the obstacles, which yet
raises the risk of mutual occlusion. To address this issue,
the Proposed uses formation as a reference distribution to
disperse the crowded trackers, and thus reduces the blockage
in dense areas. The ablation study proves the effectiveness
of our front-end and the formation strategy.

VI. REAL-WORLD EXPERIMENTS

A. System Architecture

We integrate the proposed method with a decentralized
LiDAR-based aerial swarm system. The swarm system con-
sists of three autonomous drones, each one is mounted with a
Livox Mid360 LiDAR, an onboard computer Intel NUC with
CPU i7-12700, and a PixHawk flight controller. The swarm is
localized by a decentralized swarm LiDAR-inertial odometry
(Swarm-LIO) in [17], which is developed based on FAST-
LIO2 [18] and provides 100Hz state estimation and 25Hz
point cloud for each tracker. The time offset and extrinsic
between LiDAR and IMU are calibrated by [19]. All drones
are controlled using an on-manifold MPC [20]. The swarm
is connected by a UDP wireless network. Apart from the ego
states and mutual observations that are required by Swarm-
LIO, the planned trajectories are also transmitted to all other
teammates via the UDP network. After receiving a trajectory
from a teammate, the agent synchronizes the timestamps and
then transforms the trajectory from the teammate’s frame into
its own global frame using the swarm extrinsic provided by
Swarm-LIO. This process is called trajectory alignment.

In experiments, the swarm tracks a manually operated
drone as the target. The target is attached with reflective tapes
for identification and runs Swarm-LIO for self-localization.
Informed of the velocity from the target via broadcast, each
drone tracks the target through a constant velocity Error
State Kalman Filter (ESKF) that fuses the high-reflectivity
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Fig. 8: The diagram of system architecture.

measurements from LiDAR. The target predictions are ex-
trapolated using a fixed velocity model. In implementation,
the point measured on the target and teammates are removed
in Swarm-LIO map, since these objects are non-stationary.
The complete system architecture is depicted in Fig. 8.

B. Real-world Results

To demonstrate the practicality and robustness of our
method, we test the swarm tracking system in an unknown
real-world cluttered environment. The maximum velocity of
the manually controlled target is set to 1.5m/s. The horizon
of target prediction is 2.0s, and the tracking distance bounds
dlb and dub are 1.4m and 2m. The tracking trajectory is
replanned at 10Hz. In the experiment, three autonomous
drones successfully tracked the target in a forest without
any collision or occlusion. Fig. 9 shows that the trackers
agilely deform and rotate the swarm distribution to avoid
potential occlusions. Our supplementary video2 displays the
whole tracking process. The average onboard computation
time of our method is detailed in Tab.II.

TABLE II: Onboard Computation Time (ms)

tsearch tcorridor tsector toptimize ttotal

2.11 3.09 0.03 1.73 6.96

VII. CONCLUSIONS AND FUTURE WORK

In this paper, we presented a decentralized spatial-
temporal trajectory generation framework for LiDAR-based
swarm tracking in cluttered environments. Experiments in
both simulation and real-world confirmed the efficiency
of the proposed framework. It’s worth noting that in the
experiments the target velocity was directly leveraged from
broadcasting to promote the reliability of ESKF tracking
and avoid misdetection since this work mainly focused on
decentralized trajectory planning. However, a robust onboard
LiDAR-based detector for moving objects is also a necessity
for tracking systems, which is taken as our future work.
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Fig. 9: Snapshots of real-world experiments. Three autonomous drones are tracking a target drone in the middle. (a) The white curve represents the target
trajectory. An obstacle tree is marked by a green dashed circle. Four keyframes from b to e are selected near the obstacle for further illustration. (b) - (e):
The snapshots correspond to the four keyframes in (a). each subfigure contains an image captured by a 360◦ action camera (top) and the visualization in
RViz (bottom). The same obstacle is highlighted by green markers in subfigures (b) - (e). The red curves in RViz are the planned trajectories of the tracker
drones. This figure depicts how the swarm maneuvers to avoid the occlusion caused by the obstacle.
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