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Abstract— Quadrotors are agile platforms. With human
experts, they can perform extremely high-speed flights in
cluttered environments. However, fully autonomous flight at
high speed remains a significant challenge. In this work, we
propose a motion planning algorithm based on the corridor-
constrained minimum control effort trajectory optimization
(MINCO) framework. Specifically, we use a series of overlap-
ping spheres to represent the free space of the environment
and propose two novel designs that enable the algorithm to
plan high-speed quadrotor trajectories in real-time. One is
a sampling-based corridor generation method that generates
spheres with large overlapped areas (hence overall corridor
size) between two neighboring spheres. The second is a Receding
Horizon Corridors (RHC) strategy, where part of the previously
generated corridor is reused in each replan. Together, these
two designs enlarge the corridor spaces in accordance with
the quadrotor’s current state and hence allow the quadrotor
to maneuver at high speeds. We benchmark our algorithm
against other state-of-the-art planning methods to show its
superiority in simulation. Comprehensive ablation studies are
also conducted to show the necessity of the two designs. The
proposed method is finally evaluated on an autonomous LiDAR-
navigated quadrotor UAV in woods environments, achieving
flight speeds over 13.7m/s without any prior map of the
environment or external localization facility.

I. INTRODUCTION

Quadrotors are proved to be one of the most agile

platforms which perform increasingly complex missions in

different scenarios. However, high-speed flight in unknown

environments is still an open problem. The limits on payload

and onboard sensing make this task especially challenging

for aerial robots [1]. To achieve high-speed flights, trajectory

planning is of vital importance to ensure the safety (i.e.,

collision avoidance [2]), smoothness, and fast maneuvers

facing unknown obstacles.

High-speed trajectory planning in unknown environments

is a great challenge, especially in the replanning phase where

the high quadrotor speeds require extremely agile maneu-

vers to avoid newly-sensed obstacles. Existing (re-)planning

methods [3, 4, 5] typically consist of a frontend that aims

to find a guiding path (or flight corridor) and a backend

that smooths the trajectory around the guiding path (or

optimizes a smooth trajectory within the corridor). The main

difficulty in this framework is how to design the frontend

such that the replanned guiding path (or flight corridor)
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Fig. 1. High-speed navigation in the wild. (a) The generated point
cloud map during the flight. (b) Composite images of the same flight.
(c) The generated sphere-shaped flight corridor. Video is available at
https://youtu.be/7tQCV6KBzSY
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Fig. 2. Comparison of the maximum speed in real-world experiments
(the flight speed of other methods are read from their original papers). The
Faster* [1] baseline uses a motion capture system as state feedback and a
depth camera to detect obstacles. The proposed method and SFC [4] use a
LiDAR with IMU for navigation while NanoMap [6], Learning [7], TGK-
Planner [5] use a RGB-D camera with IMU. All of the above methods
except Faster are performed in real-world forests, and Faster is tested in an
indoor artificial environment. Our approach reaches a maximum speed of
over 13.7 m/s.

is feasible: at least one dynamically-feasible and obstacle-

free solution can be found in the backend optimization.

A poorly-designed frontend may leave too little space for

the quadrotor to avoid obstacles (e.g., decelerate or make

turns), hence leaving no dynamically feasible solution in the

subsequent trajectory optimization. Another difficulty is the

backend optimization, which needs to perform both temporal

and spatial deformation in an efficient manner such that the

maximal speed can be attained.

In this paper, we propose a robust and efficient motion

planning algorithm to address the above issues systemati-

cally. The overall algorithm is based on a corridor approach.

In the backend, we adopt a state-of-the-art minimum control

effort optimization (MINCO) framework [8] to deform the

trajectory temporal and spatial parameters efficiently. Our

contribution in this paper mainly lies in the frontend, includ-

ing:

1) A novel sampling-based corridor generation method

that preserves large corridor volume by considering the

size of each sphere and their overlapped spaces. The

increased corridor volume allows more space for the

quadrotor to maneuver (hence succeed) at high speeds.

2) A Receding Horizon Corridors (RHC) scheme that

reuses corridors in the previous planning cycle. Specif-
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ically, in each replan, the first part of the flight corridor

is directly from the previous planning cycle, and the

second part is generated according to newly-sensed

obstacles. This receding scheme ensures the corridor

in each replan always contains sufficient space for the

quadrotor to maneuver from its current state, signifi-

cantly improving the replan process’s success rate and

convergence speed under high-speed flight.

3) A real-time planning system that integrates these two

designs of frontend with the MINCO backend [8]. A

comprehensive benchmark comparison and an ablation

study are conducted in simulation to show the supe-

riority of our system and the effectiveness of the two

designs.

4) Implementation and validation the proposed method on

a fully autonomous quadrotor system. Multiple real-

world tests show that our methods achieve flight speeds

over 13.7 m/s (see Fig. 1).

II. RELATED WORKS

A. High-Speed Navigation in the Wild

Various approaches have been proposed to enable au-

tonomous quadrotor flights in unknown environments. Flo-

rence et al. [9] propose a reactive planner, which takes depth

image as input and selects the best trajectory from a pre-

built motion primitives library. The work in [6] proposes

an uncertainty-aware lazy search map called NanoMap on

the reactive controller and achieves a maximum flight speed

of 10 m/s. Although it has a low computation complexity,

the pre-built set of motion primitives is relatively small,

making it difficult to cover fine maneuvering skills that are

necessary when the quadrotor is facing new, unexpected

obstacles during high-speed flights. Similar motion primitive-

based method is used (as a frontend) by Zhou et al. [3], Liu

et al. [10], Zhang et al. [11] and Kong et al. [12], which

therefore suffer from similar drawbacks. Ye et al. [5] utilizes

a frontend based on RRT* kinodynamic sampling. Similar to

the motion primitive methods, the sampled states are usually

in low dimensions (e.g., position and velocity) and few in

numbers in order to ensure sufficient computation efficiency,

making it very difficult to produce fine quadrotor maneuvers

in high-speed flights. Unlike the previous methods [5, 3, 4],

which typically have a frontend planning a rough path from

the quadrotor’s current position to the target one and a

backend which further refines the trajectory by optimization,

Zhou et al. [13] proposed to plan a whole trajectory without

considering any obstacle in the first stage and then locally

modify the trajectory to fly around the detected obstacles.

The local trajectory modification is achieved efficiently by

directly incorporating a repulsive force from obstacles in

the trajectory optimization cost function. The repulsive force

is similar to a coarse-level distance field and hence suffers

from the local minimum problem, hence unsuitable for high-

speed trajectory planning. Another interesting method is

proposed by Loquercio et al. [7], they use imitation learning

to generate a trajectory directly from the depth image and

current state. Limited by the sensing range and noise, the

success rate of their methods decreases when forward speed

is over 10 m/s. Compared with the methods mentioned

above, our method achieves much higher flight speed in both

simulation and experiments (see Fig. 2).

B. Corridor-based Trajectory Planning

Corridor-based trajectory planning methods, which use

geometrical shapes to represent free space, have been popular

in recent years. Chen et al. [14] build a discrete graph

from an OctoMap structure [15] and directly use free cubes

in OctoMap as the corridor constraints. Liu et al. [4] use

polyhedrons to represent the free space, also called convex

decomposition. Each cube or polyhedron on the flight corri-

dor then imposes multiple linear hyperplane constraints in the

subsequent trajectory optimization. Sphere-shaped corridors

are also very commonly used. Compared with polyhedrons, a

sphere imposes only one constraint in the trajectory optimiza-

tion. It can often be quickly obtained by Nearest Neighbor

Search (NN-Search) using a KD-Tree structure. Gao et

al. [16] propose a sphere-shaped corridor generation scheme

under the RRT* framework. Ji et al. [17] propose a forward-

spanning-tree-based spherical corridor generation scheme.

These two methods can generate corridors in a relatively

short time. However, their corridor generation process only

considers the connectivity of adjacent spheres. The found

spheres often have small overlaps between adjacent ones,

which over constrains the subsequent trajectory optimization

and leaves tiny space for the quadrotor to maneuver at high

speeds. Another problem is the lack of explicit consideration

of the quadrotor’s current speed, the resultant flight corridor

often does not contain sufficient space for the quadrotor to

maneuver from its current speed. The two problems will

considerably reduce the feasible solution space and cause

the backend optimization to fail. In contrast, our frontend

attempts to find large individual spheres and their overlaps,

while the receding scheme automatically incorporates the

quadrotor current speed in each replan. These two designs

greatly improve the success rate and convergence speed of

the subsequent trajectory optimization.

Trajectory optimization with the corridor constraint is also

well studied by some recent works. Ji et al. [17] use an

alternating minimization method [18] and iteratively insert

waypoints to ensure that the trajectory completely falls in the

corridor. However, the waypoints are selected heuristically,

which leads to sub-optimal solutions. Mellinger et al. [19]

use piece-wise polynomial to represent the trajectory and

generate a minimum-snap trajectory by solving a quadratic

programming (QP) problem. The corridor constraints are

used as inequality constraints in the QP. Gao et al. [16] use

B-spline to represent trajectories and formulate the corridor

constraints and trajectory optimization into a second-order

cone programming (SOCP) problem. Both methods solve the

optimization problem with hard constraints and have quite

significant computation time. Our approach is most similar

to [8]. The corridor constraints are first eliminated by a C2-

continuous barrier function. Then, a spatial-temporal de-

formation is performed. The optimization problem is finally

turned into an unconstrained one that can be solved by Quasi-

Newton methods efficiently and robustly.
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Fig. 3. The whole trajectory is composed of M pieces, contained in
their respective sphere. The green areas Bi are the spheres. The orange
points qi are the intermediate waypoints, which are always constrained in
the intersecting space of two adjacent spheres. Ti is the time allocation of
each piece. d0,dg are the given initial and goal states.

III. PRELIMINARIES

In this section, we briefly go through the backend tra-

jectory optimization used in our algorithm. We model the

quadrotor to a non-linear dynamic system following [19],

which is proved to be differential flat with flat output σ =
[x, y, z, ψ]T with p = [x, y, z]T the quadrotor position in the

world frame and ψ the yaw angle. Due to the differential

flatness, it is sufficient to plan the flat output trajectory σ(t).
In this work, we only plan the position trajectory p(t) and

specify the yaw angle trajectory Φ(t) as the tangent direction

of p(t) such that the quadrotor is always facing forward

during a flight.

As shown in Fig. 3, given a flight corridor B that consists

of a sequence of overlapping spheres (each is denoted by

Bi, i = 1, · · · ,M , see Sec. IV-A), the goal of the trajectory

optimization is to find a smooth trajectory p(t) : [0, tM ] 7→
R

3 over time duration tM that connects the initial position

q0 ∈ R
3 at time zero to the terminal one qM ∈ R

3 at time tM
and is completely contained in the sphere-shaped corridor B.

In practice, the smoothness of the trajectory is quan-

titatively represented by the magnitude of its s-th order

derivative ∥p(s)(t)∥22 (s = 4 in experiments). Moreover, the

trajectory p(t) is usually decomposed into M pieces, each

piece pi(t) is contained in sphere Bi for the time period

t ∈ [ti−1, ti], i.e.,

p(t) = pi(t− ti−1) ∈ Bi, t ∈ [ti−1, ti] (1)

Adjacent trajectory pieces pi(t) and pi+1(t) should meet

at the same point qi ∈ R
3 at time ti. Moreover, the trajectory

p(t) should start at a given initial state d0 (up to (s− 1)-th
order derivative) and terminate at a given goal state dg (up

to (s− 1)-th order derivative). Considering these constraints

and kinodynamic constraints (e.g., speed and acceleration),

the trajectory optimization can be formulated as

min
p(t)

∫ tM

0

∥p(s)(t)∥22dt+ ρT tM (2a)

s.t. p(0:s−1)(0) = d0, p
(0:s−1)(tM ) = dg (2b)

p(ti) = qi, ∀1 ≤ i < M (2c)

ti−1 < ti, ∀1 ≤ i ≤M (2d)

∥p(1)(t)∥22 ≤ v2max, ∥p
(2)(t)∥22 ≤ a2max, (2e)

p(t) = pi(t− ti) ∈ Bi, ∀1 ≤ i ≤M, t ∈ [ti−1, ti]
(2f)

where ρT is the weight penalizing the total trajectory time tM
such that the maximal allowed speed vmax can be attained.

The optimization in (2) can be solved in two steps:

in the first step, we fix the intermediate way point

q = (q1, . . . , qM−1) and time allocation vector T =
(T1, . . . , TM ), where Ti ≜ ti − ti−1 > 0, and optimize

only the first part (i.e., the smoothness) of (2a) considering

only the constraints in (2b) and (2c). Shown in [8], this

optimization problem leads to an optimal solution where

each piece pi(t) is a (2s − 1)-th order polynomial and its

coefficients are uniquely determined from (q,T), i.e.,

pi(t) = ci(q,T)Tβ(t), t ∈ [0, Ti] (3)

where ci ∈ R
2s×3 is the coefficient matrix depending

on (q,T) and β(t) = [1, t, . . . , t2s−1]T is the time basis

function.

In the second step, the complete problem in (2) is op-

timized from the class of trajectories parameterized in (3).

Since the trajectory in (3) naturally satisfies the constraints

in (2b) and (2c), the complete optimization only needs to

consider the constraints in (2d-2f). Even this, the constrained

optimization is typically time-consuming. To address this

issue, the MINCO framework [8] transforms it into an un-

constrained optimization problem detailed as follows. First,

the time constraints in (2d) are equivalent to Ti > 0, which

can be parameterized as Ti = eτi , 1 ≤ i ≤ M that always

satisfies (2d) for τi ∈ R. Then, the feasibility constraints

(2e) and (2f) can be softly penalized in the cost function by

a C2-continuous barrier function [20]:

Lµ(x) =











0 if x ≤ 0,

(µ− x/2)(x/µ)3 if 0 < x < µ,

x− µ/2 if x ≥ µ.

(4)

where µ is a constant smoothness factor (0.02 in this paper),

thus a finite weight for penalty can enforce the constraint at

any specified precision. As a consequence, the optimization

in (2) can be turned to an unconstrained form as:

min
τ ,q

J =

M
∑

i=1

(

∫ Ti

0

∥p
(s)
i (t)∥22dt+ ρT e

τi

)

+ρvel

M
∑

i=1

∫ Ti

0

Lµ

(

∥p
(1)
i (t)∥22 − v2max

)

dt

+ρacc

M
∑

i=1

∫ Ti

0

Lµ

(

∥p
(2)
i (t)∥22 − a2max

)

dt

+ρc

M
∑

i=1

∫ Ti

0

Lµ

(

∥pi(t)− oi∥
2
2 − ri

)

dt

(5)

where ρvel, ρacc, ρc are the corresponding weight of max-

imum speed, maximum acceleration and collision-free

penalty, and oi is the center and ri is the radius of the i-
th sphere. As shown in [8], all gradient of the objective

(5) with respect to waypoints q and time allocation τ

can be computed analytically, so a Quasi-Newton method

(i.e. LBFGS1) is used to solve the optimization problem

1https://github.com/ZJU-FAST-Lab/LBFGS-Lite
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effectively.

IV. PLANNER

In this section, we present the frontend design that en-

ables high-speed trajectory optimization, which is the main

contribution of this paper.

A. Sphere-Shaped Corridor

As shown in Fig. 4, a sphere is defined by its center o ∈
R

3, the nearest obstacle point n ∈ R
3, and the radius:

r = ∥o− n∥2 − rd (6)

where rd is the radius of the drone. During the trajectory

optimization process, each piece of trajectory is constrained

in the corresponding sphere to satisfy safety constraints.

The center of the corridor
The NN-point of the center

The time allocation
The start and end position

The radius of the drone

Fig. 4. The definition of one sphere and a piece of trajectory in it. qs, qe
are the start and end point of the trajectory and T is the time allocation. o
is the center of the sphere and n is the nearest obstacle point.

To generate a new sphere, we first build a KD-Tree with

the obstacle point cloud. Then, for a given center of the

sphere o, a nearest neighbor search (NN-Search) is performed

on that KD-Tree to find the nearest obstacle point n, which

then determines the radius as in (6). We call this process

GenerateOneSphere(o), which will be used in the sequel.

B. Flight Corridor Generation

The main workflow of the flight corridor generation is

described in Alg. 1, where a complete flight corridor B is

generated from the given initial position p0, goal position

pg , and a global guide path T generated by A* [21]. The

algorithm initializes with a largest possible sphere Bcur

around the initial position p0 (Line 2-3). Then, in Line 5,

a local guide point ph is selected from the guide path T ,

which is the nearest point out of the current sphere Bcur,

and a new sphere is generated by BatchSample(ph,Bcur)

(Sec. IV-B.1) and added to B. This process repeats until the

goal position pg is included in the new generated sphere

(Line 8-10).

With the found flight corridor B, the initial waypoint

position q and time allocation T are initialized by the

function WaypointAndTimeInitialization (B)(Sec. IV-B.2)

and then optimized in the backend (Sec. III).

1) Batch sample: The problem of trajectory optimization

under flight corridor constraints is highly non-convex, which

means overly conservative constraints may lead to local-

minimum or even infeasible solution when the quadrotor ini-

tial speed is high. Existing methods [16, 17] only considered

the connectivity between two adjacent spheres. To preserve

larger space for the quadrotor to maneuver hence improve the

feasibility of the trajectory optimization (5) at high-speeds,

we propose a novel batch sample method to generate a high-

quality corridor. We consider this problem in the following

Algorithm 1: GenerateCorridorAlongPath()

1 Notation: The flight corridor B; global guide path T ;
Initial and goal position: p0, pg; local guide point ph

Input: T , p0, pg
Output: B

2 Initialize Bcur = GenerateOneSphere(p0);
3 B.PushBack(Bcur);
4 while True do
5 ph = GetForwardPointOnPath(T ,Bcur);
6 Bcur = BatchSample(ph,Bcur);
7 B.PushBack(Bcur);
8 if pg ∈ Bcur then
9 break;

10 end
11 end
12 WaypointAndTimeInitialization(B);

aspects: (a) the volume of each sphere: a sphere with larger

size can better approximate the real free space with fewer

number of spheres, making the optimization problem less

constrained, (b) the volume of the overlapped spaces between

two adjacent spheres: as discussed in Sec. III, all waypoints

of the trajectory are constrained in the intersecting space,

a larger intersecting space means more freedom for the

optimization process.

NN point of last corridor

Distribution of sampler

Overlap volume

Center of last corridor

Guide point

Sample point

Obstacles

Fig. 5. The green circle Bf is the sphere generated in last round of batch
sample. The yellow point is the guide point ph. The purple points are the
sampled points according to the probability distribution represented by the
orange-shaded area. The blue circle is the best sphere in this round.

The sampling process is shown in Alg. 2. We first initialize

the sampler S in Line 2. As shown in the orange area

of Fig. 5, the sampler generates a random candidate point

pcand ∈ R
3 under a 3D Gaussian distribution N(µ,Σ),

where the mean is set at the guide point µ = ph and

the covariance is set as Σ = diag (σx, σy, σz), σx =
1
3 ∥of − ph∥2 , σz = σy = 2σx, where of is the center of

last sphere and the σx direction is aligned with the direction

of of − ph.

Then in Line 3-9, a total number of K points (called

a batch) are randomly sampled with S , each has its score

computed by the function ComputeScore(Bcand) defined

below:

Score = ρrVcand + ρvVinter (7)

where ρr, ρv ∈ R+ are positive weights, Vcand is the volume

of the candidate sphere Bcand and Vinter is the overlapped

volume between Bcand and Bf . Finally, the best sphere with

the highest score is selected in Line 13.

As shown in Fig. 6, compared with Gao [16], the proposed

method can better approximate the real free space with fewer
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Algorithm 2: BatchSample()

1 Notation: Last sphere Bf ; Guide point ph; Best sphere in
this round Bbest; Random sampler S; Maximum sample
num K; Safe distance rd; Priority queue sorted by
sphere’s score: Q;

Input: Bf , ph, K
Output: Bbest

2 Initialize: S.init(Bf , ph), k = 0 ;
3 while k < K do
4 pcand = S.GetOneRandomSample();
5 Bcand = GenerateOneSphere(pcand);
6 Bcand.score = ComputeScore(Bcand);
7 Q.PushBack( Bcand );
8 k = k + 1;
9 end

10 if Q.empty() then
11 return BatchSampleFailed;
12 end
13 Bbest = Q.top();

(a)

(b)

(c)

(d)

Fig. 6. Corridor generation comparison. (a) The corridor generated by our
proposed method in one test (b) The corridor generated by Gao et al. [16]
in the same test. (c) The comparison of overlapped volume between two
adjacent spheres over 100 tests. (d) The volume of each sphere over 100
tests. The shaded area denotes the maximum and minimum value over 100
tests.

spheres and larger sphere sizes. Furthermore, our algorithm

has lower computational complexity than Gao’s approach,

which uses an RRT-like method and takes samples from the

whole space. Our process follows a coarse-to-fine manner,

where we first use A* to find the shortest path and then take

batch samples only around this path. In this way, the sample

space, hence computation time, is significantly reduced. We

test 100 times in the same environment shown in Fig. 6. The

proposed method only takes an average 0.74 ms to generate

the corridor, while Gao’s method takes an average 100 ms.
2) Waypiont and Time Initialization: For a given flight

corridor B, we adopt a Default Initialization strategy, where

the waypoint are initialized as the center of the overlap space

between two adjacent spheres (pink points in Fig. 7(b)), and

the time allocation is initialized as Ti =
∥qi−qi−1∥2

vmax

.

C. Receding Horizon Corridors in Replan

During a high-speed flight in an unknown environment,

the quadrotor needs to replan frequently to avoid newly

sensed obstacles. We use a distance-triggering replaning

strategy. Specifically, the trajectory is planned (both frontend

corridor generation and backend optimization) in a fixed

distance D (i.e. planning horizon) depending on the sensing

range. Denote the position of last replan as plast and current

quadrotor position as pcurr. The replan process is triggered if

∥plast − pcurr∥2 > γ ·D, where γ ∈ [0, 1] is a constant ratio.

(a)

(c)(b)

Fig. 7. The receding horizon corridors strategy. (a) The green and pink
dashed circle are respectively the planing horizon in last and current replan.
(b) The pink point is the center of the overlap area, which is used by
the Default Initialization. (c) Spherical corridor in green are previously
generated, using the Hot Initialization. And corridor in blue are newly
generated, using the Default Initialization.

In this way, as the drone moves forward, the newly sensed

obstacle can be actively handled by the replan process. A

replan is also triggered when the current trajectory under

execution is found to collide with any obstacles.

A major challenge in the replan occurs when the quadro-

tor speed is high, which requires sufficient space for the

quadrotor to maneuver such that the newly sensed obstacles

can be avoided successfully. Corridor generation without

considering the quadrotor’s current state [4, 16, 17] often

causes too small feasible region in the trajectory optimization

(2), which is difficult (or even impossible) to solve (e.g., by

optimizing (5)). Another problem is that with the increase of

the current speed, the objective function becomes highly non-

convex. As described in Sec. III, our optimization problem

is turned into an unconstrained one. The non-convexity of

the objective function may cause the optimization with the

Default Initialization to easily stuck at a bad local minimum

which violates the collision-free or kinodynamic constraints.

We solve these problems by a Receding Horizon Corridors

(RHC) strategy shown in Fig. 7. The key is to reuse a few

spheres from the previous planning cycle in current replan.

Concretely, when a new replan is triggered, the nearest

future waypoint drp in q is selected as the initial state.

A few spheres after drp will be reused to constitute the

first part of the new corridor, followed by newly generated

spheres reaching the current planning horizon D. This re-

ceding scheme ensures the corridor in each replan always

contains sufficient space for the quadrotor to maneuver from

its current state (since the current quadrotor state is on

the previous trajectory, which is contained in the previous

corridor), hence significantly enlarging the feasible region in

the backend trajectory optimization. In experiments, we reuse

spheres that fall within a certain distance (e.g., 3m) of the

current quadrotor position pcurr. Furthermore, to speed up

the trajectory optimization and mitigate the local minimum

issue, the waypoints q and time allocation T contained in

the reused corridor, which were optimized in the previous

planning cycle, are used to initialize the current trajectory

optimization (i.e. Hot Initialization). The waypoints and time

allocation in the newly generated spheres are still initialized

by the default scheme (Sec. IV-B.2).
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0 m/s

15 m/s

(b)

(a)

Fig. 8. (a) The executed trajectory in Loquercio et al. [7]. (b) The executed
trajectory with the proposed method is colored with forward speed from
0 m/s to 15 m/s. The yellow star is the initial position of the drone, and
the green points are the simulated LiDAR points.

V. EXPERIMENTS

A. Benchmark Comparison

In this section, we compare the proposed method with a

most recent planning work based on imitation learning [7]

(Learning), and two model-based planning methods evalu-

ated by it, including a frontend-backend type optimization-

based method from Zhou et al. [3] (FastPlanner) and a

reactive planner designed for the high-speed flight from

Florence et al. [9] (Reactive). We evaluate the performance

of our method in a simulated forest environment used by the

learning method. Due to the unavailability of the simulation

environment used by the original work [7], we reproduce the

environment according to their description. Specifically, the

forest has trees distributed in a rectangular region R(l, w) of

width w and length l, the origin lies in the center of R. Trees

are randomly placed according to a homogeneous Poisson

point process P with the intensity δ tree/(m2). The sensor

input in the simulation includes a simulated LiDAR point

cloud, with the sensing range of 8 m at 30 Hz (see green

points in Fig. 8(b)). The quadrotor full state is assumed to

be known to eliminate the influence of state estimation.

Fig. 9. The success rate comparison for different methods. The proposed
method keeps a high success rate in all simulated test environments with
varying forest densities.

We use exactly the same configuration in [7] to make

a fair comparison: w = 30 m and l = 60 m, and the

start zone of the drone is at (−l/2, 0), the goal position

(l/2, 0). Three different tree densities with δ = 1/49 (low),

δ = 1/36 (medium), and δ = 1/25 (high) are tested. In

each experiment, we use different random seed to generate

different simulated maps. One flight is considered to be suc-

cessful only if the drone reaches the goal without violating

the velocity, acceleration, or collision-free constraints. The

results are shown in Fig. 9. Similar to [7], we test our method

10 times in each different density or speed and compute the

success rate of each, and the results of other baseline are

directly obtained from [7]. Noting that in [7], the maximum

mass-normalized thrust of the simulated drone is limited to

35.3 m/s2, while we limit our simulated drone to 15 m/s2.

As can be seen, our approach outperforms others in all cases,

even with a lower thrust limit. Moreover, compared with

Loquercio et al. [7], the proposed method generates much

smoother trajectories, which is usually easier to track (see

Fig. 8).

B. Ablation Study

To further validate each module of the proposed method,

we compare our method in detail with Gao et al. [16], which

generates sphere-shaped corridors in an RRT* style and op-

timizes a minimal snap trajectory with fixed time allocation.

We use the same simulated map configuration mentioned

in Sec.V-A, but further add tests with δ = 1/12 (super

high). The key three elements of our approach includes the

trajectory optimization in Sec. III (MINCO), the frontend

corridor generation in Sec. IV-B (Front), and the receding

horizon corridors strategy (RHC) in Sec. IV-C. A series of

ablation studies are performed, and the results are shown in

Fig. 10. Gao is the original version from [16]. This method

fails to generate trajectory with speed over 2 m/s due to

the inability to optimize time allocation in the backend. To

fix this issue, we replace the backend of Gao by MINCO

(Gao+MINCO) and compare it with our method without

RHC strategy (Ours (Front+MINCO)). The performances of

the two are very close, showing that MINCO can generate

more aggressive trajectories and that our frontend alone

does not improve the success rate much. Furthermore, we

incorporate the RHC strategy to the method Gao (Gao +

MINCO + RHC) and compare it with our full algorithm

(with both frontend and RHC). As can be seen, each method

with RHC has a significantly higher success rate at high

speeds on all map densities, verifying the effectiveness of

the RHC strategy. Moreover, our full algorithm with our

frontend (Ours(Front + MINCO + RHC)) achieves a higher

success rate than Gao with the same MINCO and RHC

strategy (Gao+MINCO+RHC), showing the effectiveness of

our frontend in the overall planning system.

C. Run Time Analysis

In this section, we compare the run time of the proposed

method with the baseline. We test our method both on the

desktop computer, with a 2.90 GHz Intel i7-10700 CPU, and

an onboard computer with a 1.1 GHz Intel i7-10710U CPU.

The baseline FastPlanner [3] and Gao [16] are tested on the

same desktop computer. The test environment is a simulated

forest with δ = 1
25 shown in Fig. 8(b). The computation time

is divided into two parts: mapping and planning. For Fast-

Planner, the mapping process includes building a Euclidean

signed distance field (ESDF), and planning includes frontend

path-search and backend trajectory optimization. For Gao’s

method, the mapping process includes a static KD-Tree

update, and the planning includes corridor generation and

SOCP optimization. For the proposed method, the mapping

includes the update of an OctoMap [15] (no ray-casting)
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Fig. 10. The ablation study of the proposed method. The green line is the proposed method (Ours(Front+MINCO+RHC)). The blue line (Gao) is the
original version of Gao et al.’s work [16]. The yellow line (Gao+MINCO) uses corridor generation from [16], but with trajectory optimization replaced
by MINCO in Sec.III. The purple line (Ours(Front + MINCO)) is our method without the RHC strategy. The red line (Gao+MINCO+RHC) uses Gao et

al.’s corridor generation method and the same MINCO optimization and RHC strategy as ours.

and an incremental KD-Tree (i.e., ikd-tree [22]). The plan-

ning includes frontend A* search, corridor generation, and

trajectory optimization. As shown in Table I, the proposed

method enjoys much lower computational complexity, which

can replan at over 50 Hz even on the onboard platform.

TABLE I

RUN TIME COMPARISON

Method Components µ [ms] σ [ms] Total [ms]

Fast-Planner [3]
Mapping 38.20 6.90

42.92
Planning 4.72 1.60

Gao [16]
Mapping 12.78 3.69

167.01
Planning 154.23 40.60

Ours
Mapping 3.16 0.76

4.69
Planning 1.53 0.63

Ours (onboard)
Mapping 8.97 6.51

13.31
Planning 4.34 2.33

D. Real-world Experiments

To verify our planning method in real-world environments,

we build a LiDAR-based quadrotor platform. The platform

has a total weight of 1.45 kg and can produce a maximum

thrust over 60 N , resulting in a thrust-to-weight ratio of

4.1. For localization and mapping, we use the Livox Mid360

LiDAR and PixHawk flight controller’s built-in IMU running

FAST-LIO2 [23] (the sensors are initialized by LI-Init [24]),

which provides 100 Hz high-accuracy state estimation and

25 Hz point cloud. The trajectory tracking controller is an

on-manifold model predictive controller in [25], the planning

horizon is set to D = 15 m and replan ratio γ = 0.4. All

perception, planning, and control algorithm are running on

an Intel NUC with CPU i7-10710U in real-time. We have
TABLE II

DETAILED PROFILE OF 11 REAL-WORLD TESTS

Executing time [s] Length [m] Average Vel. [m/s] Max Vel.[m/s]

Test1 15.59 111.18 7.05 8.02

Test2 5.81 41.61 6.97 13.72

Test3 5.69 40.65 6.92 12.00

Test4 6.16 34.63 5.47 8.80

Test5 17.21 79.17 4.54 5.01

Test6 9.90 42.75 4.23 6.54

Test7 9.60 58.65 6.01 7.00

Test8 6.99 37.55 5.21 7.05

Test9 6.02 45.72 7.34 11.64

Test10 5.70 29.39 5.01 7.00

Test11 5.40 45.08 8.11 12.00

Speed0 m/s 14 m/s

#1

#2

#11

#7

#9

#8

#10

#6
#4
#3

#5

Fig. 11. Composite image of 11 real-world flight trajectories colored by
their speed. Each experiment (trajectory) is conducted independently with
real-time mapping. After all experiments, the executed trajectory along with
the map built during each flight are registered together to produce this
composite image. The tree crown are removed to better show the trajectories.

done 12 experiments in a forest environment with maximal

speed ranging from 5 m/s to 14 m/s. All the experiments

succeeded except one due to a controller failure. Fig. 11

shows the experimental environment and all the trajectories

colored by their speed. As can be seen, our planner is robust

by accomplishing all the tests in the real-world environment.

Fig. 1 shows the third person of the quadrotor in one

flight. More quantitatively, Table II summarizes the detailed

trajectory profiles including the trajectory executing time,

total length, average and maximum speed. As can be seen,

our method achieves an average speed up to 8.11m/s and a

maximum speed of 13.7m/s. To the best of our knowledge,

this is the highest speed that a fully autonomous quadrotor

can achieve in a real-world, cluttered, and unknown environ-

ment (see Fig. 2). More visual illustration of the experiments

is shown in our video2.

Fig. 12 shows the speed and acceleration profiles of two

typical flights, called Test 1 (long trajectory length) and Test

2 (high flight speed). For Test 1, we limit the maximum speed

to 8 m/s and the maximum acceleration to 8 m/s2. In Test

2, a more agile flight is performed where the maximum speed

is 14 m/s and the maximum acceleration is 10 m/s2. As

can be seen, both speed and acceleration constraints are well

satisfied.

VI. CONCLUSION AND FUTURE WORK

In this paper, we propose a novel motion planning algo-

rithm that generates smooth, collision-free, and high-speed

2https://youtu.be/7tQCV6KBzSY
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Fig. 12. The norm of velocity and acceleration. The executed trajectory of
Test 1 is about 111.18 m, and Test 2 is about 41.61 m. The average speed
is about 7 m/s for both test, and the maximum speed is over 13.7 m/s
in Test 2.

trajectories in real-time. The whole planning system can

work with fully onboard sensing, and computation at a replan

frequency over 50 Hz. To enable high-speed flight in the

wild, we proposed two novel designs. One is a sampling-

based sphere-shaped corridor generation method, which can

generate high-quality corridors (i.e. larger size and bigger

overlaps) in a relatively short time. Another is a Receding

Horizon Corridors strategy, which fully utilizes previously

generated corridors and the optimized trajectory. With these

designs, the proposed method significantly increases the

replan success rate in high-speed cases.

One limitation of our algorithm is that the reused corridors

from last planning cycle are not guaranteed to be obstacle-

free due to newly sensed obstacles that may be occluded in

previous LiDAR measurements. This will cause the reused

corridor to be discarded and hence occasionally lower the

success rate when the environment is extremely cluttered.

This limitation can be overcome by placing the first few

corridors of a (re-)plan in known free spaces (instead of free

and unknown spaces), so that these free corridors can be

safely reused in the next planning cycle. Restraining the first

few spheres in free spaces also enables the planning of a

safe backup trajectory like [1] which guarantees a safe flight.

In the future, we will explore these designs and extend the

method to more different missions and environments.
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